摘要:为获取较高精度车内噪声主动控制(Active Noise Control, ANC)参考信号,提出了一种基于小波变换和BP神经网络的车内噪声信号重构方法。以在某轿车采集到的噪声信号为基础,用声学传递路径分析(TPA)方法确定影响车内噪声的关键点信号。鉴于噪声源信号对车内信号非线性关系的复杂性,建立BP神经网络的噪声重构模型,并利用小波分解来降低噪声信号的非平稳性。为对比重构效果,建立BP神经网络噪声重构模型。结果表明,本文提出算法的重构值与实测值之间的平均绝对误差比BP神经网络小,并且基于小波变换和BP网络重构模型的平均绝对误差均小于0.01。该方法能够对车内噪声信号进行准确、有效的重构。