基于改进粒子滤波算法的医疗锂电池PHM系统设计
DOI:
CSTR:
作者:
作者单位:

上海第二工业大学 智能制造与控制工程学院 副教授,上海第二工业大学,上海第二工业大学

作者简介:

通讯作者:

中图分类号:

TP206

基金项目:

上海第二工业大学研究生项目基金(基金号:EGD18YJ0003);


Electromedical Lithium Battery PHM System Based on Improved Particle Filter Algorithm
Author:
Affiliation:

School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University,,Shanghai Polytechnic University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对维持生命的医疗电子设备的锂离子电池维修问题,设计了一套故障预测与健康管理系统(Prognostics and Health Management-PHM),提出了PHM系统的实现框架。通过搭建一套电池控制应力水平实验平台并将故障注入锂离子电池中,来进行数据采集。建立基于阿列纽斯模型(Arrhenius Model)的医疗电子设备的锂离子电池模型,通过无迹粒子滤波(Unscented Particle Filter-UPF)算法和粒子滤波(Particle Filter-PF)算法计算出实时故障的概率并给出剩余寿命预测以及健康管理维护方法。通过Matlab对比UPF和PF的预测剩余寿命的仿真结果与实验所测数据的吻合度,选出UPF算法为最优算法并及时诊断故障,为后续维护提供建议。

    Abstract:

    Aiming at the maintenance of Li-ion battery for life-supporting medical electronic equipment, a set of Prognostics and Health Management (PHM) was designed and the implementation framework of the PHM system was proposed. A data-acquisition process was conducted by constructing a battery-controlled stress level test platform and injecting faults into a lithium ion battery. A lithium-ion battery model based on the Arrhenius model of a medical electronic device was established. The probability of real-time failures was calculated by using the UPF and PF algorithms, and the remaining life prediction and health management maintenance methods was given. Comparing the simulation results of the predicted remaining life of Unscented Particle Filter and Particle Filter with the experimentally measured data through Matlab, the UPF algorithm was selected as the optimal algorithm and the faults were diagnosed in time to provide suggestions for subsequent maintenance.

    参考文献
    相似文献
    引证文献
引用本文

何成,刘长春,武洋.基于改进粒子滤波算法的医疗锂电池PHM系统设计计算机测量与控制[J].,2018,26(11):63-67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-23
  • 最后修改日期:2018-05-22
  • 录用日期:2018-05-22
  • 在线发布日期: 2018-11-26
  • 出版日期:
文章二维码