一种适用于移动设备在线阅卷的答题卡自动识别算法
DOI:
作者:
作者单位:

西南科技大学计算机科学与技术学院 四川绵阳,西南科技大学计算机科学与技术学院 四川绵阳,西南科技大学计算机科学与技术学院 四川绵阳,西南科技大学计算机科学与技术学院 四川绵阳,西南科技大学计算机科学与技术学院 四川绵阳

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

四川省教育厅科技成果转化重大培育项目(14zd1102);西南科技大学龙山学术人才科研支持计划(17LZX425);西南科技大学研究生创新基金资助(17ycx053);


An automatic recognition algorithm for the online marking of mobile devices
Author:
Affiliation:

School of Computer Science and Technology,Southwest University of Science and Technology,School of Computer Science and Technology,Southwest University of Science and Technology,School of Computer Science and Technology,Southwest University of Science and Technology,School of Computer Science and Technology,Southwest University of Science and Technology,

Fund Project:

Major cultivation project of science and technology achievements of SiChuan education department (14zd1102);Southwest University of Science and Technology LongShan academic talent research support plan (17LZX425);;Supported by Postgraduate Innovation Fund Project by Southwest University of Science and Technology(17ycx053);

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于智能移动设备的阅卷方式无需专用设备即可快速阅卷,降低成本的同时还能增加阅卷工作的可移动性。为解决移动设备拍照阅卷时,出现的阴影、反光、倾斜(-45°~45°)等情况,设计并实现了一套答题卡自动识别算法,算法主要分为三部分:图像预处理、待识别区域定位与分割、答题卡内容识别。不同操作系统(PC、Android、IOS)下测试结果表明:该算法正常填涂采集识别率为100%,异常填涂采集识别率为93.6%;识别速度小于2s,满足实时性要求;无需修改就能在不同操作系统下编译运行,提高了程序的通用性和兼容性。目前该算法已成功应用于某教育企业上线APP中。

    Abstract:

    The marking method which based on intelligent mobile device can work fast without special equipment, reduce costs and increase the mobility of marking work. To solve the problem when using a mobile device for marking, such as shadows, reflections, tilted -45° to 45° and so on, this article designed and implemented a set of sheet automatic identification algorithm. The algorithm is mainly divided into three parts: image preprocessing, identify regional orientation and segmentation, sheet content recognition. Experimental results show in different operating systems (PC, Android, IOS): the recognition rate of the algorithm is 100%, and the detection rate of abnormal filling is 93.6%; the recognition speed is less than 2s, satisfying the real-time requirement; it can be compiled and run under different operating systems without modification, thus improving the universality and compatibility of the program.At present, this algorithm has been successfully applied to a education enterprise on-line APP.

    参考文献
    相似文献
    引证文献
引用本文

孙琳,张琪,罗念祖,邓书勤,陈念年.一种适用于移动设备在线阅卷的答题卡自动识别算法计算机测量与控制[J].,2018,26(10):255-259.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-03
  • 最后修改日期:2018-04-24
  • 录用日期:2018-04-24
  • 在线发布日期: 2018-10-16
  • 出版日期:
文章二维码