基于改进的MOSSE相关滤波的目标跟踪
DOI:
CSTR:
作者:
作者单位:

海军航空大学 舰面航空保障与场站管理系,海军航空大学 舰面航空保障与场站管理系,海军航空大学 舰面航空保障与场站管理系

作者简介:

通讯作者:

中图分类号:

基金项目:


Object Tracking Algorithm Based on Improved MOSSE Correlation Filter Algorithm
Author:
Affiliation:

Department of Carrier Aviation Security and Station Management,Naval Aviation University,Department of Carrier Aviation Security and Station Management,Naval Aviation University,Department of Carrier Aviation Security and Station Management,Naval Aviation University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频目标跟踪存在如遮挡、形变、漂移等诸多挑战。虽然研究者提出了大量的算法来解决这一问题, 但大多数不具备普适性和实时性。为了实现目标有效稳定的实时跟踪, 本文在MOSSE相关滤波算法基础上提出了一种多模式的视觉目标跟踪算法, 该算法不仅具有相关算法的实时性, 还适应跟踪目标外观大幅度变化情况。同时, 为了适应跟踪过程中目标外形的复杂变化, 提出了一个控制模式更新率的算法, 利用具有多模式的跟踪算法可以同时处理极小的运动与外形突变。对基准视频数据的仿真实验结果表明, 与对应的单模型跟踪算法相比, 本文提出的算法可以明显改善跟踪精度和稳定性。

    Abstract:

    Object tracking algorithm has many challenges for stable and accurate performance, such as occlusion, noise, drifts and so on. Although many researches proposed many robust tracking algorithms to solve these problems, the solutions have not universality and real time. Additionally, in order to achieve robust tracking performance, a multiple model update strategy for visual tracking algorithm is proposed to adapt the target appearance changes. Moreover, for adapting complex appearance change, an update rate strategy has been proposed. The multiple models update strategy for visual tracking algorithm can process both infinitesimally small movements and abrupt changes simultaneously. Simulation experiments results have demonstrated that compared to its single model tracking algorithm, our proposed strategy can improves significantly the tracking stability and accuracy in benchmark datasets.

    参考文献
    相似文献
    引证文献
引用本文

纪纲,高富东,范加利.基于改进的MOSSE相关滤波的目标跟踪计算机测量与控制[J].,2018,26(6):236-238.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-19
  • 最后修改日期:2018-03-26
  • 录用日期:2018-03-26
  • 在线发布日期: 2018-07-02
  • 出版日期:
文章二维码