一种改进的基于压缩感知的心电压缩算法
DOI:
作者:
作者单位:

中国科学院微电子研究所,中国科学院微电子研究所,中国科学院微电子研究所,中国科学院微电子研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


An Improved Compressed Sensing-Based ECG Compression Algorithm
Author:
Affiliation:

Institute of Microelectronics of the Chinese Academy of Sciences,,Institute of Microelectronics of the Chinese Academy of Sciences,Institute of Microelectronics of the Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决远程动态心电记录仪数据量过大的问题,并且克服基于压缩感知的压缩算法压缩比有限的问题,提出压缩感知压缩与移位差分位压缩结合的心电数据压缩算法,移位差分位压缩算法是无损压缩算法,在不影响压缩感知重构精度的前提下进一步提高压缩比。经实验证明,该方法将压缩感知原有4倍的压缩比最高提高到11倍,最小为4.81倍,压缩端的计算复杂度为O(N),满足远程动态心电记录仪的需求。

    Abstract:

    In order to solve the problem of huge data in remote holter recording, ensure the accuracy of ECG data reconstruction and reduce compression power consumption, an algorithm that combines compressive sensing compression with shift differential bit compression is proposed. Shift difference bit compression is a lossless compression algorithm, which improves the compression ratio without affecting the reconstruction accuracy. Block sparse Bayesian model is used to reconstruct ECG signals, the reconstruction accuracy meets the needs of physicians for diagnosis. Experiments show that the maximum compression ratio obtained by this method is 11, the minimum value is 4.81, and the computational complexity of the compression end is O(N). This satisfies the requirements of remote dynamic ECG recorders.

    参考文献
    相似文献
    引证文献
引用本文

王玉娇,刘昱,陈林海,杨连军.一种改进的基于压缩感知的心电压缩算法计算机测量与控制[J].,2018,26(7):266-270.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-14
  • 最后修改日期:2018-03-29
  • 录用日期:2018-03-30
  • 在线发布日期: 2018-07-26
  • 出版日期:
文章二维码