基于COMSOL的磁共振成像双平面梯度线圈的仿真研究
DOI:
作者:
作者单位:

中国计量大学 信息工程学院,中国计量大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Simulation Studies on the Transverse Bi-Planar Gradient Coil Design Using COMSOL
Author:
Affiliation:

College of Information Engineering,China Jiliang University,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:采用COMSOL有限元软件对磁共振成像横向双平面梯度线圈进行仿真分析,为高性能梯度线圈的设计及制作提供技术支持。方法:首先采用改进的目标场方法设计得到梯度线圈绕线的点数据,然后利用AUTOCAD建立三维模型,最后将模型导入COMSOL中,进行电-磁多场耦合模型仿真和结果分析。并且提出结合3D打印技术为复杂梯度线圈的制作提供技术支持。结果:根据设计的不同参数建立不同的梯度线圈模型进行仿真比较,所设计梯度线圈的梯度磁场可以满足非线性度小于5%的应用要求。结论:通过横向双平面梯度线圈三维模型的有限元仿真,可以为梯度线圈的设计和制作提供一定的参考,对优化设计和制作性能更优的梯度线圈具有重要意义。

    Abstract:

    Objective: To simulate and analyze the design of transverse bi-planar gradient coil for MRI by using finite element analysis software COMSOL, and to provide technical support for the design and manufacturing of high performance gradient coils. Methods: Data points for winding gradient coil were initially obtained by using improved target field method for coil design from Matlab calculation, a 3D gradient coil model was then build by AUTOCAD. This model was used as the input model for COMSOL, and electro-magnetic multiple coupled fields were simulated and analyzed. Results: Based on different design requirement and parameters, different gradient coil geometric models were built to simulate and compare with the actual design. The simulation results showed that the gradient magnetic field of the desired gradient coil can meet the application requirements with less than 5% of deviation. Conclusions: Using finite element analysis based simulation, transverse bi-planar gradient coils used in MRI can be accurately modeled according to design parameters. This is very important for coil design and its manufacturing, also significant for design optimization and producing of performance optimized gradient coils.

    参考文献
    相似文献
    引证文献
引用本文

窦建辉,朱建明.基于COMSOL的磁共振成像双平面梯度线圈的仿真研究计算机测量与控制[J].,2018,26(9):191-194.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-02-02
  • 最后修改日期:2018-03-08
  • 录用日期:2018-03-12
  • 在线发布日期: 2018-09-14
  • 出版日期:
文章二维码