摘要:近年来人体行为识别成为计算机视觉领域的一个研究热点,而卷积神经网络(Convolutional Neural Network,CNN)在图像分类和识别领域取得了重要突破,但是人体行为识别是基于视频分析的,视频包含空间域和时间域两部分的信息。针对基于视频的人体行为识别问题,提出一种改进的双流卷积神经网络(Two-Stream CNN)模型,对于空间域,将视频的单帧RGB图像作为输入,送入VGGNet_16模型;对于时间域,将多帧叠加后的光流图像作为输入,送入Flow_Net模型;最终将两个模型的Softmax输出加权融合作为输出结果,得到一个多模型融合的人体行为识别器。基于JHMDB公开数据库的实验,结果证明了改进的双流CNN在人体行为识别任务上的有效性。