基于云平台的大数据资源挖掘技术研究
CSTR:
作者:
作者单位:

(南京师范大学 泰州学院,江苏 泰州 225300)

作者简介:

薛 蓓(1985-),女,江苏泰兴人,硕士,助理研究员,主要从事计算机技术,教育管理方向的研究。 周延怀(1954-),男,江苏镇江人,大学,教授,主要从事物理学方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:

2015年泰州市软科学研究计划项目(RKX201529)。


Research on Large Data Resource Mining Technology Based on Cloud Platform
Author:
Affiliation:

(Taizhou College, Nanjing Normal University,Taizhou 225300,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对云平台下大数据资源挖掘过程准确率低、耗时长等问题,对大数据资源挖掘技术进行改进研究;利用MST聚类法对云平台数据集进行预处理,根据数据间的关联性来增强检测结果,并提高数据索引效率,将数据间的邻接矩阵作为边的权值,生成全图的MST,获取评价数据资源挖掘准确度的标准,并得到k个最小生成子树,其中的一个子树就是数据集最优聚类结果;实验结果表明,所提方法有效提高了大数据挖掘准确性,使得数据资源得到了更高效的利用。

    Abstract:

    In order to solve the problem of low precision and long time consuming in mining large data resources under the cloud platform, the mining technology of large data resources is improved. Preprocessing of the cloud platform data sets using MST clustering method to enhance the detection results according to the relevance between data and data, improve the efficiency of the index, the adjacency matrix data as edge weights, generating graph MST, obtain evaluation data mining accuracy standard, and get k a minimum spanning tree. The results of the optimal clustering a sub tree, which is the data set. Experimental results show that the proposed method effectively improves the accuracy of large data mining, and makes data resources more efficient.

    参考文献
    相似文献
    引证文献
引用本文

薛蓓,周延怀,王晓兰.基于云平台的大数据资源挖掘技术研究计算机测量与控制[J].,2017,25(12):275-278.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-14
  • 最后修改日期:2017-10-24
  • 录用日期:
  • 在线发布日期: 2018-01-04
  • 出版日期:
文章二维码