基于深度残差网络的脱机手写汉字识别研究
CSTR:
作者:
作者单位:

(1.湖北大学 资源环境学院,武汉 430062;2.重庆大学 建设管理与房地产学院,重庆 400045)[HJ1.53mm]

作者简介:

张 帆(1981-),男,湖北武汉人,博士,讲师,主要从事机器学习、语音信号处理方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(41301516);区域开发与环境响应湖北省重点实验室基金(2016B003)。


Recognition of Off-line Handwritten Chinese Character Based on Deep Residual Network
Author:
Affiliation:

(1.Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China;2.Faculty of Construction Management and Real Estate,Chongqing University, Chongqing 400044, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手写汉字识别是模式识别与机器学习的重要研究方向和应用领域;近年来,随着深度学习理论方法的完善、新技术的层出不穷,深度神经网络在图像识别分类、图像生成等典型应用中取得了突破性的进展,其中,深度残差网络作为最新的研究成果,已成功应用于手写数字识别、图片识别分类等多个领域;将研究深度残差网络在脱机孤立手写汉字识别中的应用方法,通过改进残差学习模块的单元结构,优化深度残差网络性能,同时通过对训练集的预处理,从数据层面实现训练生成模型性能的提升,最后设计实验,验证深度残差网络、End-to-End模式在脱机手写汉字识别中的可行性,分析、总结存在的问题及今后的研究方向。

    Abstract:

    Handwritten Chinese character recognition is an important research direction and application field of pattern recognition and machine learning. In recent years, with the development of the theory and the new technology, deep neural network have made a breakthrough in the field of image recognition and image generation. Specialty, Deep Residual Networks as the latest method, has been successfully applied to handwritten numeral recognition, image recognition classification and other fields. In this paper, we study the application of Deep Residual Networks in off-line isolated handwritten Chinese character recognition, and optimize the performance of Deep Residual Networks by improving the unit structure of residual learning module. At the same time, we improve the model performance by preprocessing the training set. Then, the experiment is designed to verify the feasibility of the Deep Residual Networks and End-to-End mode in off-line handwritten Chinese character recognition. And finally we analyze and summarize the existing problems and future research directions.

    参考文献
    相似文献
    引证文献
引用本文

张帆,张良,刘星,张宇.基于深度残差网络的脱机手写汉字识别研究计算机测量与控制[J].,2017,25(12):259-262.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-18
  • 最后修改日期:2017-10-17
  • 录用日期:
  • 在线发布日期: 2018-01-04
  • 出版日期:
文章二维码