基于Adaboost算法的水质组合预测方法研究
DOI:
CSTR:
作者:
作者单位:

北京工商大学计算机与信息工程学院,北京工商大学计算机与信息工程学院,北京工商大学计算机与信息工程学院,北京工商大学计算机与信息工程学院,北京市水务局办公室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家水体污染控制与治理重大专项(2017ZX07104002);国家自然科学基金(61703008);北京市教委科技计划重点项目(KZ201510011011);北京市市属高校创新能力提升计划项目(PXM2014_014213_000033)


Research on Water Quality Combination Forecasting Method Based on Adaboost Algorithm
Author:
Affiliation:

Beijing Technology and Business University School of Computer and Information Engineering,,Beijing Technology and Business University School of Computer and Information Engineering,Beijing Technology and Business University School of Computer and Information Engineering,Office of Beijing Water Authority

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水质预测是水环境污染防治的重要内容,针对传统水质预测方法精度低、收敛速度慢等问题,研究首先选取Symlets和Daubechies小波系作为小波函数,对原始数据进行去噪处理并对比,再结合RBF、Elman神经网络以及支持向量机各自优点,通过不同算法优化三种预测模型,提出基于Adaboost算法将优化后的RBF、Elman神经网络以及支持向量机相结合的组合预测方法。以北海为对象进行仿真实验,验证基于Adaboost的溶解氧组合预测方法的有效性,并分别与单一模型的预测结果进行对比,结果表明该方法相比于传统的单一模型预测精度得到了提高,为水质精准预测提供了一种新思路。

    Abstract:

    Water quality prediction is an important content of water pollution prevention and control, aiming at the problems such as low accuracy and slow convergence of traditional water quality prediction methods. In this paper, the Symlets and Daubechies wavelet systems are selected as the wavelet function, and the original data are denoised and compared. Combined with the advantages of RBF, Elman neural network and support vector machines, three different prediction models are optimized by different algorithms, a combined forecasting method based on Adaboost algorithm is proposed to optimize RBF, Elman neural network and support vector machine. Taking Beihai as the object to carry on the simulation experiment, the effectiveness of the method based on Adaboost"s dissolved oxygen combination is verified and compared with the prediction results of the single model. The results show that the proposed method is improved compared with the traditional single model, which provides a new idea for the accurate prediction of water quality.

    参考文献
    相似文献
    引证文献
引用本文

康 铎,许继平,赵峙尧,王小艺,刘松波.基于Adaboost算法的水质组合预测方法研究计算机测量与控制[J].,2018,26(8):41-45.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-19
  • 最后修改日期:2018-01-24
  • 录用日期:2018-01-25
  • 在线发布日期: 2018-09-04
  • 出版日期:
文章二维码