基于STM32F和极限学习机在火灾检测中的应用
DOI:
CSTR:
作者:
作者单位:

浙江工业大学信息工程学院,浙江工业大学信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省自然科学基金


Application of STM32F and ELM in fire detection
Author:
Affiliation:

College of information engineering, Zhejiang University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统单一信号的火灾检测方式存在误判问题,以及布线复杂并且性价比低的弱点,提出了基于STM32F和极限学习机火灾检测方法;该方法首先通过STM32F模块采集多个传感器的值(烟雾传感器,甲烷传感器,可燃气体传感器,一氧化碳传感器),WLAN为载体进行数据发送,然后采用加权滤波对数据进行去噪处理,获得极限学习机的训练和测试样本库,模型训练结束后,以测试数据进行方法验证,并对验证结果进行评估。结果表明,该方法能够准确判断火灾类型,准确度达到90%以上。在火灾处理算法方面,极限学习机相对于BP神经网络、支持向量机和贝叶斯网络训练时间短,准确率高,具有较高的应用于推广价值。

    Abstract:

    Traditional fire detection mechanisms which aims at using a single signal method results in misjudgements, complex wiring and low performance-to-price ratio. Aiming at solving these problems, a method of fire detection based on STM32F and extreme machine learning algorithms is proposed. For our model, the value of multiple sensors by STM32F module is collected, a WLAN is used as the carrier to transmit data and then denoised by weighted filter to obtain the training data for the ELM. After the model training, a simulation experiment on fire detection is finally carried out on a test data to evaluate and verify the resulting performance. The result shows that, our method can accurately identify fire types with 90% accuracy. In fire?signal?processing?algorithms, the proposed model is faster and achieves higher accuracy when compared with several state-of-the-art methods such as BP neural network, Naive Bayesian and SVM, and it is practical and worthy of using abroad.

    参考文献
    相似文献
    引证文献
引用本文

刘恺,赵先锋,包月青.基于STM32F和极限学习机在火灾检测中的应用计算机测量与控制[J].,2018,26(8):31-35.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-11-23
  • 最后修改日期:2017-12-20
  • 录用日期:2017-12-21
  • 在线发布日期: 2018-09-04
  • 出版日期:
文章二维码