基于改进CAPSO的原油管道调合多性质优化方法
CSTR:
作者:
作者单位:

(1.河海大学 能源与电气学院,南京 211100;2.南京富岛信息工程有限公司,南京 210032)

作者简介:

叶彦斐(1974-),男,江苏南京人,博士,副教授,主要从事油品调合技术、综合自动化系统等方向的研究。 [FQ)]

通讯作者:

中图分类号:

基金项目:

南京市自主知识产权开发计划项目(201604024);江苏省博士后基金(1402043C)。


An Optimization Method of Crude Oil Pipeline Blending Based on Modified CAPSO
Author:
Affiliation:

(1.College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;2.Richisland Information Technology Co.,Ltd., Nanjing 210032, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在仔细研究原油管道调合工艺基础上,提出一种基于改进有约束自适应粒子群优化(CAPSO)算法的原油管道调合多性质优化方法;首先,基于原油调合规则库、优化预处理及设备实际工作能力约束,建立了多原油多性质优化模型;然后,根据原油调合目标,通过CAPSO算法对优化模型进行快速、准确的优化计算,获得多种组分原油的最优配比;投运效果表明,系统能够自动、高效计算出原油调合的最优配比,避免人工计算所造成的一致性差,计算效率低并且不易获得最佳配比的问题,有效提高了加工设备的生产效率。

    Abstract:

    An optimization method based on modified constraint adaptive particle swarm optimization (CAPSO) algorithm is proposed on the basis of careful analysis of the crude oil pipeline blending process. First of all, a model of properties optimization through many types of crude oil blending is established based on crude oil blending rules, optimization pretreating and the constraints of equipment working ability; then, according to the given crude oil blending target, fast and accurate optimization calculation by using CAPSO algorithm is done to obtain the optimal combination of crude oil components. The actual effect shows that the system can efficiently, automatically calculate the optimal proportion of crude oil blending, avoid the problems such as the poor consistency, low computation efficiency and being not easy to get the best blending ratio caused by manual calculation, effectively improve the production efficiency of the processing equipment.

    参考文献
    相似文献
    引证文献
引用本文

叶彦斐,陈蓉,董正凯,唐伟伟,张勇气,黄朝杰.基于改进CAPSO的原油管道调合多性质优化方法计算机测量与控制[J].,2017,25(10):154-157, 227.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-16
  • 最后修改日期:2017-04-11
  • 录用日期:
  • 在线发布日期: 2017-11-09
  • 出版日期:
文章二维码