基于智能传感视觉的电缆裸露风险模式识别指标分析
DOI:
作者:
作者单位:

浙江工业大学信息工程学院;台州职业技术学院,浙江工业大学信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

台州市科技计划项目资助(1501KY56)


Index analysis of cable exposed risk pattern recognition based on intelligent sensing vision
Author:
Affiliation:

College of Information Engineering,Zhejiang University of Technology;School of Electrical Information,Taizhou Vocational DdDd Technical College,College of Information Engineering,Zhejiang University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了避免电缆裸露造成的工程作业故障等问题,提出基于智能传感视觉的电缆裸露风险模式识别指标分析。通过了解致使电缆裸露因素,分析电缆裸露风险识别指标和原理,对电缆破损数据进行预处理。采用SVD方法提取数据特征,引入智能传感视觉技术实现电缆破损数据重构,从而完成对电缆裸露风险模式识别指标的分析。实验结果表明,所提方法分析准确性高,有效降低电缆裸露风险,减少电力传输过程的损失。

    Abstract:

    In order to avoid the problems of engineering operation caused by cable exposure, the index analysis of cable exposed risk pattern recognition based on intelligent sensing vision is proposed. The cable damage data is pretreated by analyzing the exposed factors of cable and analyzing the index and principle of cable exposed risk identification. SVD method is used to extract the data characteristics, and the intelligent sensing vision technology is introduced to reconstruct the cable damage data, so as to complete the analysis of cable exposed risk pattern recognition index. The experimental results show that the proposed method has high accuracy and can effectively reduce the risk of cable exposure and reduce the loss of power transmission process..

    参考文献
    相似文献
    引证文献
引用本文

周伟敏,杨东勇.基于智能传感视觉的电缆裸露风险模式识别指标分析计算机测量与控制[J].,2018,26(7):165-168.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-28
  • 最后修改日期:2017-10-28
  • 录用日期:2017-11-15
  • 在线发布日期: 2018-07-26
  • 出版日期:
文章二维码