基于集成相关向量机的水质在线预测模型
作者:
作者单位:

华南理工大学机械与汽车工程学院,广州中国科学院沈阳自动化研究所分所,华南理工大学机械与汽车工程学院

基金项目:

广东省科技项目(2016A020221002)。


Online prediction model of water quality based on ensemble RVM
Author:
Affiliation:

School of Mechanical Automotive Engineering,South China University of Technology,,School of Mechanical Automotive Engineering,South China University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对污水处理过程存在着强非线性和非稳态运行等特征,传统传感器维护成本高昂且无法快速准确地测量生化需氧量(BOD)等水质指标的问题,提出一种基于集成相关向量机的水质在线预测模型。该模型首先采用相关向量机(RVM)为弱预测器,利用改进的AdaBoost.RT算法将多个弱预测器集成为强预测器,实现了污水处理过程中水质的在线预测。仿真实验结果表明,该水质在线预测模型预测精度高,综合性能突出,克服了单一预测器随着异常点增多,模型泛化能力下降和鲁棒性不足的问题,能较好地实现了污水处理过程中的水质在线预测。

    Abstract:

    Wastewater treatment exists strong nonlinearity, unsteady operation and other characteristics, traditional hardware transducer are with huge maintenance problems and make it extremely difficult to obtain water-quality index quickly and accurately, such as BOD. Concerning the concert problems, an online prediction model of water quality based on ensemble RVM is proposed. Firstly, set RVM as weak predictor and then use improved AdaBoost.RT to embody several weak predictor into strong predictor. The simulation experiments demonstrated that this online prediction model has higher precision, better generalization ability, and overcomes the less effectiveness and robust problem of single predictor induced by increasing abnormal points. Therefore, the proposed model can meet the requirements of online prediction of water quality of wastewater treatment process.

    参考文献
    [1] 黄道平, 刘乙奇, 李艳. 软测量在污水处理过程中的研究与应用[J]. 化工学报, 2011, 62(1): 1-9.
    [2] 张瑞成,王宇,李冲. 基于NW型小世界人工神经网络的污水出水水质预测[J]. 计算机测量与控制, 2016, 24(1): 61-63.
    [3] Pai T Y, Wan T J, Hsu S T, Chang T C, Tai Y P, Lin C Y, Su L E, Yu L F. Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent[J]. Computers Chemical Engineering, 2009, 33(7): 1272-1278.
    [4] 黄银蓉, 张绍德. MIMO最小二乘支持向量机污水处理在线软测量研究[J]. 自动化与仪器仪表, 2010, 30(4):15-17.
    [5] Chen Z M, Hu J. Wastewater treatment prediction based on chaos-GA optimized LS-SVM[C] //Proceedings of the 2011 Chinese Control and Decision Conference. Mianyang: China Academic Journal Electronic Publishing House, 2011: 4021-4024.
    [6] 许玉格, 刘莉, 曹涛. 基于Fast-RVM的在线软测量预测模型[J]. 化工学报, 2015, 66(11): 4540-4545.
    [7] 冉维丽, 乔俊飞. 基于PCA时间延迟神经网络的BOD在线预测软测量方法[J]. 电工技术学报, 2004, 19(12): 78-82.
    [8] Pani A K, Mohanta H K. Application of support vector regression, fuzzy inference and adaptive neural fuzzy inference techniques for online monitoring of cement fitness[J]. Powder Technology, 2014, 264: 484-497.
    [9] 杨飚, 周阳. 一种改进的相关向量机回归方法[J]. 科学技术与工程, 2015, 15(2): 241-245.
    [10] TIPPING M E. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
    [11] 毛志忠, 田慧欣, 王琰. 基于AdaBoost混合模型的LF炉钢水终点温度软测量[J]. 仪器仪表学报, 2008, 29(3): 662-667.
    [12] Solomatine D P, Shrestha D L. AdaBoost.RT: A boosting algorithm for regression problems[C] //IEEE International Joint Conference on Neural Networks, Piscataway, 2004: 1163-1168.
    [13] Yu G P, Yuan M Z, Wang H. On simplified model for activated sludge wastewater treatment process and simulation based on benchmark[C] //Proceedings of the 26th Chinese Control Conference, 2007: 182-186.
    [14] Masuda K. Global optimization of point search by equilibrium search of gradient dynamical system [J]. Electronic and Communication in Japan, 2008, 91(1): 19-31.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭承诚,于广平,邱志成.基于集成相关向量机的水质在线预测模型计算机测量与控制[J].,2018,26(3):224-227.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-21
  • 最后修改日期:2017-10-21
  • 录用日期:2017-11-08
  • 在线发布日期: 2018-03-29
文章二维码