融合ViBe与帧差法的交叉路口多车辆检测方法
CSTR:
作者:
作者单位:

(浙江工业大学 计算机科学与技术学院,杭州 310023)

作者简介:

高 飞(1974),男,四川邻水人,博士生导师,主要从事计算机视觉、图像处理方向的研究。 [FQ)]

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61272310,0);浙江省自然科学基金项目(LQ14F020004, LY13F020029)。


Multi Vehicle Detection Based on ViBe and Frame Difference Method
Author:
Affiliation:

(College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    前景检测的精确程度是交叉路口车辆检测的重要因素,传统的基于背景建模的前景检测方法存在拖影现象,并且通常难以分辨出无牌车辆,针对上述问题,提出一种融合ViBe与帧差法的前景检测算法,并在此基础上结合车牌检测算法来检测场景当中的车辆;首先,结合帧差法和ViBe算法对背景像素点的判定结果,采用不同更新因子更新背景模型,其次,使用一种多条件过滤车牌检测算法定位运动区域当中车牌,最后,以检测到的车牌中心为锚点,定位出最终车牌区域;实验结果表明,该前景检测算法可有效应对交叉路口场景下的前景检测的拖影现象,同时车辆检测算法可以准确检测出进入场景时的车辆,并分辨出无牌车辆。

    Abstract:

    The accuracy of foreground detection is an important factor to the intersection of vehicle detection. There’s ghost phenomenon in traditional foreground detection method based on background modeling, and it’s difficult to distinguish unlicensed vehicles. Aiming at the above problems, put forward a foreground detection method based on ViBe and frame difference, and combining with license plate detection result to detect vehicles in scene. Firstly, using different factor to update background model depend on the result of frame difference method and the ViBe algorithm. Secondly, a multi condition filter is applied to detect license plate in foreground. Finally, take the center of license plate as the anchor to locate vehicle area. The experimental results show that multi vehicle detection based on ViBe and frame difference method can effectively deal with the ghost phenomenon in intersection scene, at the same time the vehicle detection algorithm can accurately detect vehicles enters the scene, and identify unlicensed vehicles.

    参考文献
    相似文献
    引证文献
引用本文

高飞,高炎,徐云静,卢书芳,肖刚.融合ViBe与帧差法的交叉路口多车辆检测方法计算机测量与控制[J].,2017,25(10):35-38.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-14
  • 最后修改日期:2017-05-03
  • 录用日期:
  • 在线发布日期: 2017-11-09
  • 出版日期:
文章二维码