摘要:在表情中含有最多特征信息的是面部眉毛、眼睛和嘴巴这三个区域,为充分利用这些特征,减少图像中无用信息在识别过程中对计算机内存的占用,提高人脸表情识别系统的准确率和速度,首先采用haar 和 adaboost人脸检测算法,对图像中的人脸进行识别,获得人脸图像并提取眉毛、眼睛和嘴巴,生成局部(眉毛、眼睛、嘴巴)二值化图,利用PCA方法对人脸图像降维,降维后的全局和局部灰度特征值组成一个列向量。样本由表情数据库产生,经过神经网络样本训练后,进行表情识别。结果表明,该系统对人脸表情识别速度明显快于Gabor 小波算法;识别的准确率高于单独使用PCA算法和神经网络算法;消耗内存比用Gabor 小波算法少,运行较流畅。得出结论:因为提取出包含表情特征信息集中区的眉毛、眼睛和嘴巴,尽可能地多保留了这些局部特征信息,因而提高了表情识别准确率,同时,采用PCA方法对原始图像进行降维处理,有效的减少了信息冗余。