摘要:随着GPU硬件设备的普及和GPGPU技术的快速发展,越来越多的研究人员投入到GPGPU的研究当中。当前,GPU具有很强大的并行计算能力、浮点运算能力、计算单元集成能力等特点,显示出了GPU在并行计算领域的巨大潜力。CUDA是由NVIDIA公司提出的一种利用GPU进行并行计算的架构,CUDA使得GPU具有友好的可编程性,为研究人员能够在GPU上实现各种领域的科学计算提供了方便的途径。K均值聚类算法由于其概念简单,易于实现等优点成为并行计算研究的一个热门方向。对于K均值并行算法的研究,有基于8核CPU并配备FPGA加速板的方法,但对于一个需要启动数千个线程的复杂模型,基于传统CPU并行计算方法难以实现;也有使用CUDA并行计算平台对K均值聚类算法进行处理,但处理算法时通常忽略对CUDA平台上K均值聚类算法自身的优化。基于以上缺陷,介绍K均值聚类算法的同时对算法在CUDA平台上进行了相应优化,特别针对更新中心点的耗时问题,提出了一种基于滑动门中心点计算的K均值聚类并行计算。实验结果表明,当聚类数较多时,相对于传统的更新中心点算法,基于滑动门中心点并行算法的效率更高。