图像场景识别中深度学习方法综述
作者:
作者单位:

河海大学 计算机与信息学院,河海大学 计算机与信息学院

中图分类号:

TP 391.4


Review of the deep learning in image scene recognition
Affiliation:

College of College of Computer and Information,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    场景识别是一种用计算机实现人的视觉功能的技术,它的研究目标是使计算机能够对图像或视频进行处理,自动识别和理解图像和视频中的场景信息。由于场景识别技术拥有广泛的应用前景,因此得到了许多关注。随着大数据时代的来临和深度学习的发展,使用深度学习方法解决场景识别问题已经成为场景识别领域未来的发展方向。文章首先概述介绍了场景识别技术的主要研究内容和发展情况,之后阐述了在图像场景识别中深度学习方法的应用情况,然后介绍了一些在图像场景识别中深度学习方法应用的具体的典型案例,同时给出了这几种方法具体的对比与分析。最后给出了文章的结论,总结了当前图像场景识别中使用深度学习方法的发展情况,并且对未来的发展方向给出了一些展望和建议。

    参考文献
    [1]Chen C Y, Choi W, Chandraker M. Atomic scenes for scalable traffic scene recognition in monocular videos[C]// IEEE Winter Conference on Applications of Computer Vision. IEEE, 2016:1-9.
    [2]Fei-Fei L, Perona P. A Bayesian Hierarchical Model for Learning Natural Scene Categories.[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2005:524-531.
    [3]Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022.
    [4]Oliva A, Torralba A. Building the gist of a scene: the role of global image features in recognition.[J]. Progress in Brain Research, 2006, 155(2):23-36.
    [5]Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]// Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE, 2006:2169-2178.
    [6]Zhou B, Garcia A L, Xiao J, et al. Learning Deep Features for Scene Recognition using Places Database[J]. Advances in Neural Information Processing Systems, 2014, 1:487-495.
    [7]李学龙, 史建华, 董永生,等. 场景图像分类技术综述[J]. 中国科学:信息科学, 2015, 45(7):827-848.
    [8]Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012:1097-1105.
    [9]Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91---110.
    [10]Dalal N, Triggs B. Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR[J]. 2005, 1(12):886-893.
    [11]Wu J, Rehg J M. CENTRIST: A Visual Descriptor for Scene Categorization[C]// SUBMITTED TO IEEE TRANS. PAMI. 2009:1489-1501.
    [12]Song X, Jiang S, Herranz L, et al. Category co-occurrence modeling for large scale scene recognition[J]. Pattern Recognition, 2016, 59:98-111.
    [13]顾广华, 韩晰瑛, 陈春霞,等. 图像场景语义分类研究进展综述[J]. 系统工程与电子技术, 2016, 38(4):936-948.
    [14]Bosch A, Zisserman A, Mu, et al. Scene classification via pLSA[C]// Computer Vision - ECCV 2006, European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, Proceedings. DBLP, 2006:517-530.
    [15]Li L J, Su H, Xing E P, et al. Object Bank: A High-Level Image Representation for Scene Classification Semantic Feature Sparsification[C]// Advances in Neural Information Processing Systems 23:, Conference on Neural Information Processing Systems 2010. Proceedings of A Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada. DBLP, 2010:1378-1386.
    [16]Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database[J]. 2009:248-255.
    [17]Girshick R, Donahue J, Darrell T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[J]. 2014:580-587.
    [18]Sharma S, Tripp B. How Is Scene Recognition in a Convolutional Network Related to that in the Human Visual System?[M]// Artificial Neural Networks and Machine Learning – ICANN 2016. Springer International Publishing, 2016.
    [19]Jia, Yangqing, Shelhamer, et al. Caffe: Convolutional Architecture for Fast Feature Embedding[J]. Eprint Arxiv, 2014:675-678.
    [20] Donahue J, Jia Y, Vinyals O, et al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition[J]. 2013, 50(1):I-647.
    [21]Khan S, Hayat M, Bennamoun M, et al. A Discriminative Representation of Convolutional Features for Indoor Scene Recognition[J]. IEEE Transactions on Image Processing, 2016, 25(7):3372-3383.
    [22]Wang L, Guo S, Huang W, et al. Knowledge Guided Disambiguation for Large-Scale Scene Classification With Multi-Resolution CNNs[J]. IEEE Transactions on Image Processing, 2016, 26(4):2055-2068.
    [23] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. Computer Science, 2015.
    [24] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]// Computer Vision and Pattern Recognition. IEEE, 2015:1-9.
    [25] Zhou B, Khosla A, Lapedriza A, et al. Places: An Image Database for Deep Scene Understanding[J]. 2016.
    [26]Xiao J, Hays J, Ehinger K A, et al. SUN database: Large-scale scene recognition from abbey to zoo[C]// Computer Vision and Pattern Recognition. IEEE, 2010:3485-3492.
    [27]Quattoni A, Torralba A. Recognizing indoor scenes[C]// Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009:413-420.
    [28]Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classification[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. DBLP, 2009:1794-1801.
    [29]Xie G S, Zhang X Y, Yan S, et al. Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, PP(99):1-1.
    [30] Herranz L, Jiang S, Li X. Scene Recognition with CNNs: Objects, Scales and Dataset Bias[C]// Computer Vision and Pattern Recognition. IEEE, 2016:571-579.
    [31]Guo S, Huang W, Wang L, et al. Locally Supervised Deep Hybrid Model for Scene Recognition[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2016, 26(2):808-820.
    [32]马宁, 陶亮. 基于多特征融合的室内场景识别[J]. 控制工程, 2016, 23(11):1845-1850.
    [33]Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014.
    [34] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):págs. 212-223.
    引证文献
引用本文

宋 杰,孟朝晖.图像场景识别中深度学习方法综述计算机测量与控制[J].,2018,26(1).

复制
分享
文章指标
  • 点击次数:10770
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-06-21
  • 最后修改日期:2017-07-08
  • 录用日期:2017-07-12
  • 在线发布日期: 2018-02-02
文章二维码