云计算环境下动态数据聚集算法研究
DOI:
CSTR:
作者:
作者单位:

石家庄铁道大学 信息科学与技术学院,中北大学 电子与计算机科学技术学院,石家庄铁道大学 信息科学与技术学院

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:


Research on Dynamic Data Aggregation Algorithm in Cloud Computing Environment
Author:
Affiliation:

College of Computer Technology,Shijiazhuang Tiedao University,College of Electronics and Computer Science Technology,North University of China,College of Computer Technology,Shijiazhuang Tiedao University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云计算技术的普及带动了数据的增长,为了对云环境下动态数据进行管理,防止数据损坏甚至丢失,方便后续利用,需要对云计算环境下动态数据进行聚集。但目前大多数算法都是基于线性时间概率计数的数据聚集算法,通过数据聚集操作在中间节点预先对数据进行处理,去除数据冗余,减少数据传输,实现节能,对于云计算环境下数据聚集操作存在的重复计数问题,通过研究对副本不敏感的概要结构并优化某些特性,从而完成数据聚集,但这种方法存在占用的存储空间较大,且不能保证动态数据聚集的准确性的问题。为此,提出一种基于粒子群优化算法的云计算环境下动态数据聚集算法,该算法通过对云计算环境下动态数据聚集算法数学模型进行分析,在此基础上,提出基于粒子群优化算法的云计算环境下动态数据聚集算法。首先对云计算环境中的动态数据结构模型进行分析,完成对云计算环境下动态数据的离散样本频谱特征的计算,实现云计算环境下动态数据聚集样本的特征提取和信息模型构建。针对粒子群算法收敛速度慢的问题,本文通过混沌映射方法对其进行优化,通过生成混沌序列,解决粒子群算法存在的问题,利用粒子群优化算法进行特征聚集,从而完成云计算环境下动态数据聚集算法。实验结果表明,本文所提算法能够有效提高动态数据聚集的可靠性和稳定性,降低聚集时间,减少所占内存空间,具有较强的实践性,为该领域的发展创造了条件。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

孟维韬,马彦敏,朴春慧.云计算环境下动态数据聚集算法研究计算机测量与控制[J].,2018,26(1).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-05-25
  • 最后修改日期:2017-06-15
  • 录用日期:2017-06-19
  • 在线发布日期: 2018-02-02
  • 出版日期:
文章二维码