摘要:为了提高信号重建的精度以及稀疏度适用范围,提出了一种新的测量矩阵优化方法,减小测量矩阵和稀疏变换矩阵的相关性。首先,由测量矩阵和稀疏变换矩阵的乘积构造Gram矩阵;根据Gram矩阵的维数,计算互相关函数的下确界即Welch界;其次,由Welch界确定阈值,收缩Gram矩阵中大于阈值的非对角元;然后,由新得的Gram矩阵和稀疏变换矩阵反解出测量矩阵,迭代更新,从而达到减小相关性,优化测量矩阵的目的。实验结果表明:依据Welch界优化测量矩阵,能快速降低压缩感知矩阵相关性的最大值,提高OMP算法的性能,例如在误差率为10-0.9时,原高斯随机矩阵需要23个观测值,算法优化后只需16个观测值,相对于Elad、Zhao等观测矩阵优化方法,文中提出的算法具有更小的重构误差,性能和稳定性也略有提升。