小波模极大值法与数学形态学边缘检测细化结果
CSTR:
作者:
作者单位:

(中北大学 机械与动力工程学院,太原 030051)[HJ1.35mm]

作者简介:

江宇博(1993-),男,研究生,主要从事图像处理方向的研究。 刘 波(1974-),男, 博士, 副教授,主要从事机电液一体化设备的智能控制和状态监测方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:


Wavelet Modulus Maxima Method and Mathematical Morphology Edge Thinning Results
Author:
Affiliation:

(School of Mechanical and Power Engineering,North University of China,Taiyuan 030051,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像边缘检测的关键是尽可能多的检测到边缘并且抑制噪声的同时,尽可能的满足单线的边缘定位精度;为此选取了一种融合小波模极大值和数学形态学的边缘检测方法来获取图像边缘;首先在对图像进行小波分解,分别利用模极大值法和多尺度多结构数学形态学方法来处理小波分解的高频分量和低频分量,利用差影法对二者的结果进行融合;然后利用大律法得到二值化图像,并用形态学边缘细化算法细化图像边缘得到最后结果;实验结果显示,融合的方法可以得到比较完善的边缘,经过二值化和边缘细化后,获得的单线宽边缘更加清晰,定位精度更高。

    Abstract:

    The key to image edge detection is to detect edges as much as possible and suppress noise effectively. Finally we want to meet the single-line edge positioning accuracy. For the purpose, a new edge detection method based on wavelet transform modulus maxima and mathematical morphology is selected to get the edge of image. First, the original image is decomposed by wavelet decomposition. After that, wavelet modulus maxima method and multi-scale and multi structure mathematical morphological method were used to deal with high-frequency components and low frequency components separately. Then, the two edges processed before were fused by sub-subtraction method and morphological edge thinning algorithm is used to get the thinning edge of the image. The experiments show that the fusion method can get more perfect edge, the single-line edge is more clear, and the positioning accuracy is improved.

    参考文献
    相似文献
    引证文献
引用本文

江宇博,刘波.小波模极大值法与数学形态学边缘检测细化结果计算机测量与控制[J].,2017,25(3):165-168.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-25
  • 最后修改日期:2016-11-24
  • 录用日期:
  • 在线发布日期: 2017-05-31
  • 出版日期:
文章二维码