国防科学技术大学,,,,
TP391.4
National University of Defense Technology,,,,
以检测不良坐姿,分析人们学习工作状态为引导,设计了基于深度图像的坐姿检测系统。该系统采用3D传感器获取人体坐立时的深度图像,设计了一种基于深度阈值的快速前景提取与干扰移除方法,能快速有效的提取坐姿状态下的人体分割图。基于人体轮廓的曲线特征实现了人体关键点定位,通过人体关键点的角度、深度信息与轮廓特征,对不同的坐姿图像进行统计分析,得到了一种区分不同坐姿的判定基准,运用该基准对9种不同坐姿进行识别,平均识别率可达到90%。最后,基于Android平台设计了坐姿检测系统的应用软件,实现了坐姿检测、坐姿提醒以及姿态统计等功能,并且对学习过程进行测试,测试结果表明,本系统可以有效的检测出9种坐姿、并对不良坐姿进行提醒与统计。
曾星,罗武胜,孙 备,鲁 琴,刘涛诚.基于深度图像的嵌入式人体坐姿检测系统的实现计算机测量与控制[J].,2017,25(9).