In the mobile computing environment, through the optimization of the remote user experience data mining, to meet the personalized needs of remote users, improve the quality of QoS service for remote users. The traditional data mining methods use significant feature association information extraction algorithm, when the difference between the remote user experience data is not obvious, the accuracy of mining is not good. Put forward remote user experience data mining model based on a associated with the user adaptive link tracking compensation of mobile computing environment, remote user experience data mining model of overall design and data structure feature analysis, on the acquisition of the remote user experience data of non linear time series decomposition, the sequence of data by self correlation feature matching and feature compression to achieve data mining point of information optimization extraction, associated user adaptive link tracking compensation method to realize the error control and compensation of data mining is used to improve the accuracy and efficiency of the data mining. Simulation results show that using the mining method for mobile computing environment remote user experience data mining of high accuracy, real-time well and meet the personalized needs of remote mobile users, the increase of user services targeted.