一种混合入侵检测模型
DOI:
CSTR:
作者:
作者单位:

中山职业技术学院,广东科学技术职业学院 计算机工程技术学院,

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

国家自然科学基金项目(61170193);广东省自然科学基金项目(S2013010013432);中山市社会公益科技研究项目(2016B2142)


ONE MIXED INTRUSION DETECTION MODEL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高入侵检测模型的准确率,提出一种基于K-均值算法、朴素贝叶斯分类算法和反向传播神经网络的混合入侵检测模型。首先,采用基于分区、无监督式聚类分析的K-均值算法进行数据的聚类处理,得到易于被机器处理和学习的数据集。为了进一步获取必要的数据属性,将聚类处理的结果输入到贝叶斯分类器进行分类。然后,具有较短学习周期的反向传播神经网络负责训练数据分类样本。最后,基于KDD CUP99数据集,对混合入侵检测模型进行了仿真实验,实验结果表明,通过混合入侵检测模型,DoS、U2R、R2L和Probe等入侵数据被精准地检测出。相比其它入侵检测模型,混合入侵检测模型取得了较高的准确率和召回率,以及较低的误报率,具有一定的实用价值。

    Abstract:

    In order to improve the accuracy of intrusion detection model, one mixed intrusion detection model was proposed in this paper, which combined with K-means algorithm, Naive Bayes algorithm and Back-Propagation neural network. In this work, as a partition-based, unsupervised cluster analysis method, K-means method was firstly applied. The data sets obtained were easily processed and learned by arbitrary machine learning algorithm in this form of clustering. Then, Bayes classifier processes these outcomes as a probability model. In this step, the fit and essential data attributes were achieved. Next, filter data samples learning was implemented by Back Propagation Neural Network, which was able to learn the patterns with less number of training cycles. Finally, the mixed intrusion detection model was validated by experiments on KDD CUP99’s datasets. Attacks as DoS, U2R, R2L and Probe were detected via the mixed intrusion detection model. The simulation experiments results show that the mixed intrusion detection model improved the accuracy and error rate compared with other models as well as the recall rate. Furthermore, this mixed intrusion detection model also demonstrates some value of practical application.

    参考文献
    相似文献
    引证文献
引用本文

梁本来,杨忠明,蔡昭权.一种混合入侵检测模型计算机测量与控制[J].,2017,25(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-01-24
  • 最后修改日期:2017-02-19
  • 录用日期:2017-02-21
  • 在线发布日期: 2017-07-18
  • 出版日期:
文章二维码