基于风扰动预测的阵风减缓最优控制研究
DOI:
作者:
作者单位:

清华大学 计算机科学与技术系,清华大学 计算机科学与技术系,清华大学 计算机科学与技术系

作者简介:

通讯作者:

中图分类号:

V249.1

基金项目:


Research on optimal control for gust alleviation based on wind disturbance prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前大多数阵风减缓控制方法都是等到飞机到达风场之后才起作用,由此带来了时滞与舵面速率饱和等问题。为了解决这一问题,提出了一种基于风扰动预测的阵风减缓控制系统方案。首先,对风扰动预测技术进行了研究,利用二阶互补滤波器实现了一种基于激光测风雷达获取的阵风信息与其它渠道获取的阵风信息的数据融合算法。其次,以某型民用飞机模型为对象,采用LQR方法设计最优状态调节器使得性能指标最小。接着,引入基于风扰动预测的前馈补偿,使得在未来阵风到达时飞机状态要尽可能保持不变。仿真结果表明,基于风扰动预测的阵风减缓最优控制系统能大幅度地减少阵风干扰对飞机法向过载和俯仰角速度的影响,证明了所设计的控制系统方案的正确性和有效性。

    Abstract:

    At present, most of the gust alleviation control methods start to work only when the aircraft reaches the wind field, which brings the problem of time delay and saturation of the rudder-speed. In order to solve this problem, a gust alleviation control system scheme based on wind disturbance prediction is proposed. Firstly, the technology of wind disturbance prediction is studied, and the second-order complementary filter is used to implement a data fusion algorithm which is based on the gust of wind acquired by laser radar and other channels. Secondly, based on a certain type of civil aircraft model, the optimal state regulator is designed by using LQR method. Then, the feedforward compensation based on the wind disturbance prediction is introduced, so that the state of the aircraft can be kept as constant as possible when the arrival of gust in the future. The simulation results show that the optimal control system for gust alleviation based on the wind disturbance prediction can greatly reduce the effect of gust disturbance on the normal overload and pitch angular velocity of aircraft, which proves that the correctness and effectiveness of the proposed control system.

    参考文献
    相似文献
    引证文献
引用本文

吴德贵,朱纪洪,刘凯.基于风扰动预测的阵风减缓最优控制研究计算机测量与控制[J].,2017,25(6):17.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-01-03
  • 最后修改日期:2017-01-03
  • 录用日期:2017-01-19
  • 在线发布日期: 2017-07-18
  • 出版日期: