基于综合监控的设备状态修方案研究
DOI:
CSTR:
作者:
作者单位:

1.南瑞集团公司国网电力科学研究院,1.南瑞集团公司国网电力科学研究院,1.南瑞集团公司国网电力科学研究院,1.南瑞集团公司国网电力科学研究院

作者简介:

通讯作者:

中图分类号:

TB114.3

基金项目:


The scheme of Equipment State Repair Based on Integrated Monitoring system
Author:
Affiliation:

NARI Group Corporation State Grid Electric Power Research Institute,NARI Group Corporation State Grid Electric Power Research Institute,NARI Group Corporation State Grid Electric Power Research Institute,NARI Group Corporation State Grid Electric Power Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着工业控制领域的不断发展,综合监控系统已经日趋成熟并于工业现场运行较长时间。而基于综合监控系统获取的大量历史数据的分析和实时数据的使用并没有开展深入的探讨。本方案提出了一种基于综合监控系统的状态修方案,把综合监控系统的历史数据经过一定的清洗,建模导入到大数据平台,通过相应的算法分析,从而改善维修决策模型并建立设备评价体系;把实时数据实时的传递到设备状态页面,减轻了传统巡检工作,保证了设备检查效果;把设备报警数据通过分类,分项,直接派生检修工单,实现了设备维修的自动化。

    Abstract:

    With the continuous development of industrial control, integrated monitoring system has become increasingly mature and been operated in the industrial field for a long time. While the analysis on large number of historical data produced by comprehensive monitoring system and the use of real-time data do not carry out in-depth discussion. This scheme proposes a state-based repair scheme based on the integrated monitoring system, the maintenance decision model is improved and the equipment evaluation system is established through the corresponding algorithm analysis based on the large data platform which stores the historical data of the integrated monitoring system. Real-time data transmission to the device status page, reducing the traditional inspection work and ensure the equipment inspection results. After the classification and sub-item, the equipment alarm data directly generate maintenance work orders, which achieves the equipment maintenance automation.

    参考文献
    相似文献
    引证文献
引用本文

朱东升,张浩,张昆,崔伟.基于综合监控的设备状态修方案研究计算机测量与控制[J].,2017,25(6):15.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-23
  • 最后修改日期:2017-01-18
  • 录用日期:2017-01-18
  • 在线发布日期: 2017-07-18
  • 出版日期:
文章二维码