E-Elman神经网络在冰蓄冷空调系统建模中的应用
作者:
作者单位:

西南交通大学机械工程学院,西南交通大学机械工程学院

中图分类号:

TU831.3

基金项目:

中央空调系统节能快速诊断方法研究(四川省省级建筑节能专项资金项目,项目编号:2013-02-05)


The application of modeling in ice storage air conditioning system based on the E-Elman neural network
Author:
Affiliation:

School of Mechanical Engineering,Southwest Jiaotong University,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [8]
  • | | | |
  • 文章评论
    摘要:

    冰蓄冷技术能够为空调系统带来显著的节能效果, 已广泛地应用在现代建筑当中, 准确的监测数据预测值有利于系统合理地运行; 针对实际冰蓄冷空调工程中的能源管理控制系统(energy management and control system, EMCS)数据采样周期较长所导致在系统制冰与融冰阶段数据不足的问题, 提出了一种改进的机组运行状况预测模型; 模型算法以数据变化趋势为依据, 在传统Elman中引入评价层以约束网络输出值, 增加计算针对性, 从而提高模型输出的准确性; 仿真结果表明, 此种建模方法解决了系统融冰与制冰阶段的数据突变及网络输出值局部最优解等问题, 与传统Elman网络结构相比, 其输出值更为接近测量值, 有效地提高了模型输出的真实性; 通过关联函数, 设计的模型对冷水机组的能源消耗也可起到预测作用, 进一步说明了其实用性。

    Abstract:

    Ice storage has been widely used in modern buildings, because of the prominent energy saving effect for air conditioning systems. However, sampling periods of energy management and control system (EMCS) are long in some projects. This leads to data deficiencies at the time of making and melting ice, and influents the output of prediction model ulteriorly. This paper analyzes the engineering data of current percentage and chilled water temperature with the data variation trend in the actual project, and designs an improved prediction model based on the E-Elman neural network. The result shows that the improved model has enhanced the facticity of predicted outputs significantly, and solves the problems about data mutation and local optimum. Meanwhile, the improved model has superior performance.

    参考文献
    [1]李帆, 曲世琳, 于丹, 曹勇, 毛晓峰. 基于运行数据人工神经网络的空调系统逐时负荷预测[J]. 建筑科学, 2014, 30(2): 72-75.
    [2]沈国民, 舒刚. AHU系统中模糊自整定PID控制器模拟[J]. 暖通空调, 2009, 39(3): 138-140.
    [3]Ma R J, Yu N Y, Hu J Y. Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem[J]. The Scientific World Journal, 2013, DOI: 10.1155/2013/718345.
    [4]郭旭红, 芮延年, 李军涛. 基于遗传算法的模糊智能变频空调仿真系统的研究[J]. 系统仿真学报, 2005, 17(5): 1237-1243.
    [5]Arnab C, Sam M, Tahir C. Chapter 6 - Dynamic Simulation, Chaos Theory, and Statistical Analysis in Process Safety[M]. Multiscale Modeling for Process Safety Applications, 2016, 289-308.
    [6]孔祥玉, 马红光, 韩崇昭. 非线性系统建模与故障诊断应用[M]. 北京:科学出版社, 2014.
    [7]Hong W G, Feng Q, Yan C L, Du W L, Wang L. Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network[J]. Nonlinear Analysis: Real World Applications, 2008, 9: 1345–1360.
    [8]Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 1340–1358.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵志达,余南阳. E-Elman神经网络在冰蓄冷空调系统建模中的应用计算机测量与控制[J].,2017,25(6):27.

复制
分享
文章指标
  • 点击次数:939
  • 下载次数: 76
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-12-07
  • 最后修改日期:2016-12-29
  • 录用日期:2016-12-30
  • 在线发布日期: 2017-07-18
文章二维码