基于免疫遗传算法改进的BP神经网络在灭火系统电路板故障诊断中的应用
DOI:
CSTR:
作者:
作者单位:

装甲兵工程学院 控制工程系,装甲兵工程学院 控制工程系,装甲兵工程学院 控制工程系,装甲兵工程学院 控制工程系,装甲兵工程学院 控制工程系

作者简介:

通讯作者:

中图分类号:

基金项目:


The application of BP neural network improved by Genetic immune algorithm in fire extinguishing system circuit board fault diagnosis
Author:
Affiliation:

Department of Control Engineering,Academy of Armored Forced Engineering,,Department of Control Engineering,Academy of Armored Forced Engineering,Department of Control Engineering,Academy of Armored Forced Engineering,Department of Control Engineering,Academy of Armored Forced Engineering

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对装甲车辆灭火系统电路板规模较大,功能日趋多样与完善的同时,其复杂程度也日益提高,故障层次越来越多,故障现象与故障原因的映射关系更加复杂,组合故障频发,传统的故障诊断方法已不能满足灭火系统电路板故障诊断的要求。设计了基于免疫遗传算法优化的BP神经网络对灭火系统电路板进行故障诊断,并在免疫和遗传过程中保留了部分训练最优解。实现了神经网络收敛速度的提高,使用Matlab编程优化算法并完成了电路板仿真故障的诊断。通过实验验证了该诊断模型的准确性和可靠性,为电气系统通用检测设备的神经网络诊断方法实现提供了理论支撑。

    Abstract:

    In view of the armored vehicle fire extinguishing system circuit board size is bigger, function has become increasingly diverse and perfect at the same time, and the complexity is improved, fault levels become more complex, the relationship of the fault phenomenon and the cause of the problem becomes more complex, combination malfunction appears frequently, the traditional fault diagnosis methods can not meet the requirements of fire extinguishing system circuit board fault diagnosis. The thesis designs immune genetic algorithm to optimize the BP neural network fault diagnosis to fire extinguishing system circuit board, and retained part of the training optimal solution in the process of immune and genetic. The algorithm realize the improvement of the neural network convergence speed, using Matlab programming optimization algorithm and circuit board fault diagnosis simulation is completed. The accuracy and reliability of the diagnosis model is verified by experiment, and the neural network diagnosis method provides a theoretical support for the general testing equipment of electrical systems.

    参考文献
    相似文献
    引证文献
引用本文

李光升,梁靖聪,谢永成,李国强,王天祺.基于免疫遗传算法改进的BP神经网络在灭火系统电路板故障诊断中的应用计算机测量与控制[J].,2017,25(6):3.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-07
  • 最后修改日期:2017-01-11
  • 录用日期:2017-01-13
  • 在线发布日期: 2017-07-18
  • 出版日期:
文章二维码