Abstract:In order to accurately control the exoskeleton robot to follow the human movements, it is needed to establish a dynamic and accurate mathematical model. The human lower extremity exoskeleton is a multiple degrees of freedom, strong coupling and nonlinear multi-link system, it is difficult to establish an accurate kinematic and dynamic models. We use three-dimensional motion capture and spatial positioning system, to get the actual human motion parameters (kinematics and dynamics), use support vector machine (SVM) to learn mathematical model of human lower extremity exoskeleton. Using the model we constructed the control method of support vector machine based sensitivity amplification. Using MATLAB and LIBSVM to build the model, simulation results show that the learning method based on SVM model will be able to accurately calculate the dynamic model of the human lower extremity exoskeleton,and simplify the modeling process; SVM based sensitivity amplification control, can effectively calculate the output torque of the human lower limb skeletal joints (hip, knee and ankle joints), and control the exoskeleton robot follow the movement of the human body.