北方工业大学,,
北京市教育科研基金面上项目
North China University Of Technology,,
(北方工业大学,机械与材料工程学院,北京,100144) 摘要: 未知室内环境中的障碍检测是室内移动机器人领域的热点问题。在低成本条件下为更加准确的对环境中的障碍进行检测,提出一种基于低成本Kinect传感器点云数据进行环境障碍检测的有效方法。首先通过Kinect三维点云数据,对点云数据进行去燥处理,并进行三维数据到二维平面的投影的转换并通过DBSCAN聚类算法对投影的二维点云数据进行聚类分析。通过设置相邻顶点间最大距离阈值对convex-hull凸包算法进行改进,试验结果表明改进的凸包算法能够对障碍进行有效识别。该方法在Matlab中进行了方法验证,并在P3-DX移动机器人平台上进行了试验验证,结果表明该方法能够有效对环境中的障碍进行有效识别。
薛彦涛,吕洪波,孙启国.基于Kinect深度数据的移动机器人障碍检测方法研究计算机测量与控制[J].,2017,25(2):14.