主成分分析与遗传神经网络在制冷系统故障诊断中的应用
DOI:
作者:
作者单位:

(1.中国华阴兵器试验中心 环境模拟室,陕西 华阴 714200;2.西北工业大学 动力与能源学院,西安 710072)

作者简介:

张 琪(1984-),女,陕西咸阳人,硕士研究生,工程师,主要从事故障诊断与预测方向的研究。 吴亚锋(1966-),男,陕西渭南人,博士研究生导师,主要从事信号与信息处理方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:


Application of Principal Component Analysis and Genetic Neural Network in Fault Diagnosis of Refrigeration System
Author:
Affiliation:

(1. Department of Environment simulation, Huayin Ordinance Test Centre, Huayin 714200, China ;2. School of Power and Energy, Northwestern Polytechnical University , Xi’an 710072, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低温试验系统制冷设备测点多、数据间存在强相关性等特点,将主成分分析法和遗传神经网络智能识别方法进行组合,引入制冷系统的故障诊断中;结合专家经验和主成分分析客观地对多传感器信息进行了科学合理的故障特征优选,从而确定了神经网络的输入空间;为了克服神经网络易陷入局部最小的缺陷,利用遗传算法的全局搜索能力,对神经网络的初始权值和阈值进行了优化;运用该方法对制冷系统各故障状态进行识别,结果表明,简洁有效的网络结构不仅缩短了训练时间,而且提高了网络的稳定性和分类精度,为监测系统提供了一种有效的故障诊断方法。

    Abstract:

    According to the characteristics of data measured from refrigeration equipment in low temperature test system, such as a huge number of points, a strong correlation between the data, genetic neural network combined with principal component analysis (PCA) is introduced into fault diagnosis in the refrigeration system. With the knowledge of expert experience and PCA, the fault feature is extracted from multi sensor information in a scientific and reasonable way, so the input space of the neural network is fixed. The defects of neural network is easy to fall into the minimum in local space, but genetic algorithm(GA) has global search ability, aim at eliminating the defects, GA is used to optimize the initial weights and thresholds of neural network. Using the method into the fault state identification of the refrigeration system, it showed that the simple and effective network structure not only shorten the training time, but also improve the network stability and classification accuracy, so it provides an effective method of fault diagnosis for the monitoring system.

    参考文献
    相似文献
    引证文献
引用本文

张琪,吴亚锋,徐建.主成分分析与遗传神经网络在制冷系统故障诊断中的应用计算机测量与控制[J].,2016,24(9):23-27.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-02-27
  • 最后修改日期:2016-04-18
  • 录用日期:
  • 在线发布日期: 2016-09-28
  • 出版日期:
文章二维码