低照度条件下超分辨率人脸图像采集系统设计与实现
DOI:
CSTR:
作者:
作者单位:

四川水利职业技术学院 信息工程系,成都农业科技职业学院 信息技术分院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

四川省教育厅自然科学一般资助项目


Design and implementation of high resolution face image acquisition system under low illumination
Author:
Affiliation:

Department of Information Engineering Sichuan water conservancy vocational college,DepartmentSofSInformationSTechnology ChengduSAgriculturalSCollege

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在计算机技术高速发展的时代,多平台计算机视觉库随之产生。OpenCV作为一种开源代码的计算机视觉库,以可兼容多平台、接口广泛的特点被广泛运用各个领域。在低照度条件下,会出现光照环境差异过大或光线不足等情况,导致传统图像采集系统不能采集高质量的人脸图像,局限性较差。提出基于OpenCV在C 环境配置下运用三维人脸识别技术算法,设计一套低照度条件下超分辨率人脸图像采集系统。实验证明,该设计方案具有实时(对焦速度快)、快速(单张采集0.05秒)、准确(面部识别率99.3%)等特点,能够充分满足低照度条件下超分辨率人脸图像采集的需求。

    Abstract:

    In the era of rapid development of computer technology, multi platform computer vision library will be produced. As an open source computer vision library, OpenCV is widely used in various fields, which is compatible with multi platform and interface. Under the condition of low illumination, the illumination environment difference is too big or the light is insufficient, which leads to the traditional image acquisition system can not collect the high quality face image, and the limitation is poor. Based on OpenCV in the C++ environment configuration, the use of 3D face recognition technology algorithm, design a set of low illumination conditions of the super resolution face image acquisition system. Experiments show that the design scheme with real-time focusing speed), fast (single acquisition 0.05 seconds), accurate (facial recognition rate of 99.3%) etc. characteristics, be able to fully meet the needs of low illumination conditions for super-resolution of face image acquisition.

    参考文献
    相似文献
    引证文献
引用本文

罗 敏,李 辉.低照度条件下超分辨率人脸图像采集系统设计与实现计算机测量与控制[J].,2016,24(11).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-29
  • 最后修改日期:2016-09-21
  • 录用日期:2016-09-21
  • 在线发布日期: 2016-11-30
  • 出版日期:
文章二维码