基于径向基神经网络的航空发动机气路故障诊断
DOI:
CSTR:
作者:
作者单位:

(中国民航飞行学院 航空工程学院,四川 广汉 618307)

作者简介:

赵 军(1980-),男,安徽淮北人,高级工程师,博士,主要从事的研究方向为航空发动机故障诊断研究。 [FQ)]

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51306201);四川省教育厅自然科学项目(16ZB0035);中国民用航空飞行学院科学研究基金(J2014-38); 中国民用航空飞行学院科学研究基金(J2015-28)。


Diagnosis of Aero-engine Gas Path Fault Based on Radial-Basis Function Neural Network
Author:
Affiliation:

( Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于径向基神经网络对民用高涵道比航空发动机风扇、增压级、高压压气机、高压涡轮、低压涡轮5大气路部件的效率降低故障进行诊断;采用Gasturb进行故障训练样本和测试样本库的生成,诊断结果显示,采用径向基神经网络进行航空发动机气路故障诊断的计算时间短、精度较高,不仅能定性的定位故障部位,而且在大多数情况下可以定量的给出该部件的性能衰退程度;某些情况下诊断结果与测试样本不尽一致,但都是方程的合理解,这是因为航空发动机的数学模型是一个多解的复杂方程,一个总性能的衰减对应着多组部件性能衰退的组合;随噪声幅值加大,诊断精度变差,同时研究发现诊断精度受噪声影响的敏感系数在不同的噪声幅值水平下是不同的。

    Abstract:

    Fault diagnosis of five gas path parts such as fan, booster, high-pressure compressor(HPC), high-pressure turbine(HPT), low-pressure turbine(LPT)'s efficiency degradation have been conducted based on Radial-Basis Function(RBF) neural network. The training and testing samples have been generated by Gasturb software. Diagnose result showed RBF neural network has advantage of less-time-costing and high-precision. RBF neural network can not merely isolate the fault parts, also it can determinate the degradation of components performance. In some instances, the diagnostics result doesn't agree with testing sample, but it also is reasonable solution, because the mathematical model of aero-engine is so complicated that the mathematical equation have more than one reasonable solutions. A degradation of gross performance may be caused by several combinations of components performance degradation. With increasing amplitude of noise, precision of diagnostics became worse. Sensitivity coefficient of diagnostics-precision corrupted by noise is variable with different amplitude of noise.

    参考文献
    相似文献
    引证文献
引用本文

赵军,侯宽新,赖安卿.基于径向基神经网络的航空发动机气路故障诊断计算机测量与控制[J].,2016,24(7):76-81.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-18
  • 最后修改日期:2016-02-24
  • 录用日期:
  • 在线发布日期: 2016-08-09
  • 出版日期:
文章二维码