基于灰度共生矩阵与反向投影的织物疵点检测
DOI:
CSTR:
作者:
作者单位:

(湖北工业大学 机械工程学院,武汉 430068)

作者简介:

孙国栋(1981-),男,湖北天门人,博士,副教授,主要从事机器视觉、模式识别等方向的研究。 [FQ)]

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51205115)。


Fabric Defect Detection Based on Gray-level Co-occurrence Matrix and Back Projection
Author:
Affiliation:

(School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对织物疵点检测,将灰度共生矩阵(Gray-level Co-occurrence Matrix,GLCM)与反向投影结合起来,提出了一种基于GLCM的反向投影方法(GLCM-BP);首先介绍了GLCM-BP的原理,然后给出了织物疵点检测流程,分析并优化了GLCM的距离d与灰度级N等参数,选择了相应的滤波与自适应阈值分割方法以检测疵点,同时给出了7种常见疵点的检测结果;最后将本文方法与GLCM方法作了检出率的比较;结果表明,提出的方法具有良好的疵点分割效果,可显著提高疵点检出率。

    Abstract:

    A method (GLCM-BP) which combines Gray-level Co-occurrence Matrix (GLCM) with back projection is proposed according to the fabric defect detection. Firstly the principle of GLCM-BP is introduced. Then the fabric defect detection process is given, and the parameters of distance namely d and gray levels namely N of GLCM are analyzed and optimized, and appropriate methods of filtering and adaptive threshold segmentation are adopted to detect the defects. At the same time, detection result on seven kinds of common defects is presented. Finally, this method is compared with GLCM method on the detection rate. The results show that proposed method has good defect segmentation effect and can significantly improve the defect detection rate.

    参考文献
    相似文献
    引证文献
引用本文

孙国栋,林松,艾成汉,赵大兴.基于灰度共生矩阵与反向投影的织物疵点检测计算机测量与控制[J].,2016,24(7):65-67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-12
  • 最后修改日期:2016-03-07
  • 录用日期:
  • 在线发布日期: 2016-08-09
  • 出版日期:
文章二维码