改进人工蜂群算法优化ELM分类模型
DOI:
作者:
作者单位:

武警工程大学 信息工程系,武警工程大学 信息工程系,武警工程大学 信息工程系

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(61402529); ;武警工程大学基础研究基金(WJY201603)


Improved Artificial Bee Colony optimize ELM classification model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对极限学习机(Extreme Learning Machine,ELM)参数优化问题,提出改进人工蜂群算法(Improvement Artificial bee colony, IABC)优化ELM分类模型。算法采用解更新策略池代替固定不变的更新策略,将邻域搜索自适应化;优化侦察蜂搜索方式,利用Kent映射产生均匀性更优的初始随机数序列。在分类数据集中,将IABC-ELM分类模型同ELM、PSO-ELM分类模型进行对比实验。实验中,IABC-ELM模型取得了最佳的分类结果,得到了最低的输出权重范数。结果表明,IABC-ELM模型分类效果显著优于对比模型,证实了IABC算法优化ELM分类模型的有效性和优越性。

    Abstract:

    Due to the drawbacks of parameter optimization in Extreme learning Machine, an Improved Artificial Bee Colony was proposed to optimize ELM classification model. In the IABC algorithm, the solution update strategy pool was used to replace the fixed update strategy; Optimized the search mode of scouts; The initial random number sequence generated by Kent mapping for better uniformity. In the classification data set, IABC-ELM classification model was compared with the ELM and PSO-ELM classification model. IABC-ELM model obtains the best classification result and the lowest output weight norm. The results show that the classification performance of IABC-ELM model is significantly better than that of the contrast model. Confirmed the validity and superiority of the IABC algorithm to optimize the ELM classification model.

    参考文献
    相似文献
    引证文献
引用本文

赵虎,左开伟,覃永震.改进人工蜂群算法优化ELM分类模型计算机测量与控制[J].,2016,24(10).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-11
  • 最后修改日期:2016-07-11
  • 录用日期:2016-07-22
  • 在线发布日期: 2016-11-09
  • 出版日期:
文章二维码