基于预估测量值的EKF在手臂测姿中的应用
作者:
作者单位:

常州大学 信息科学与工程学院,常州大学 信息科学与工程学院


Extend Kalman Filter Based on Predicted Measurements
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对载体线性加速度以及周围局部磁干扰对姿态测量精度的影响,基于已有的惯性测量单元,设计了一个基于四元数的实时估计手臂姿态的扩展卡尔曼滤波器(EKF)。提出利用四元数引入加速计和磁强计的预估测量值构造自适应测量噪声协方差阵的方法,结合QUEST算法,来判定姿态角解算对陀螺仪、加速计和磁强计输出信息的依赖程度,以此来提高测量精度。文末通过实验仿真对该方法进行了验证,并对实验结果和电磁跟踪系统采集到的数据进行了比较,结果表明,本文提出的方法能显著提高手臂姿态测量精度,可有效满足应用要求。

    Abstract:

    For the linear acceleration and magnetic interference that effect on the measurement precision of the attitude, based on the existing inertial measurement unit(IMU), this paper describes a quaternion-based extended Kalman filter designed for real-time estimation of the orientation of arm motion. And proposes an adaptive approach that constructs measurement noise covariance matrix by introducing the predicted measurements of the accelerator and magnetometer with quaternion, combining QUEST algorithms, to determine the degree of dependence of gyroscope, accelerometer and magnetometer output signals, in order to improve the measurement accuracy. At the end of this paper, this method is verified by simulation and experiment, and the comparison of experimental results and the data collected by electromagnetic tracking system, shows that the method proposed in this paper can significantly improve the arm pose measurement accuracy, which can which can meet application requirements effectively.

    参考文献
    [1]Yun X, Bachmann E R. Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking[J]. IEEE Transactions on Robotics, 2007, 22(6):1216-1227.
    [2]Sabatini A M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(7):1346-1356.
    [3]刘兴川, 张盛, 李丽哲,林孝康. 基于四元数的MARG传感器姿态测量算法[J]. 清华大学学报:自然科学版, 2012,(5):627-631.
    [4]Sabatini A M. Inertial Sensing in Biomechanics: Techniques Bridging Motion Analysis and Personal Navigation[J]. Medical Informatics Concepts Methodologies Tools Applications, 2009.
    [5]戎海龙, 戴先中, 刘信羽. 烹饪过程中锅具运动姿态测量方法[J]. 中国惯性技术学报, 2009, 17(4):419-423.
    [6]Rehbinder H, Hu X. Drift-free attitude estimation for accelerated rigid bodies [C]// Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. IEEE, 2001:4244-4249 vol.4.
    [7]汪俊, 许胜强, 程楠,等. 基于多传感器的运动姿态测量算法[J]. 计算机系统应用, 2015(9):134-139.
    [8]Harms H, Amft O, Winkler R, et al. ETHOS: Miniature Orientation Sensor for Wearable Human Motion Analysis[C]// Sensors, 2010 IEEE. IEEE, 2010:1037-1042.
    [9]Yun X, Bachmann E R, Mcghee R B. A Simplified Quaternion-Based Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field Measurements[J]. IEEE Transactions on Instrumentation Measurement, 2008, 57(3):638-650.
    [10]Sabatelli S, Galgani M, Fanucci L, et al. A double stage Kalman filter for sensor fusion and orientation tracking in 9D IMU[C]// Sensors Applications Symposium (SAS), 2012 IEEE. IEEE, 2012:1-5.
    [11]Sabatini A M. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.[J]. Sensors, 2012, 12(7):8491-8506.
    [12]Angelo Maria S. Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation.[J]. Sensors, 2011, 11(10):9182-9206.
    [13]Sessa S, Zecca M, Lin Z, et al. A Methodology for the Performance Evaluation of Inertial Measurement Units[J]. Journal of Intelligent Robotic Systems, 2013, 71(2):143-157.
    [14]卞鸿巍, 金志华, 王俊璞,等. 组合导航系统新息自适应卡尔曼滤波算法[J]. 上海交通大学学报, 2006, 40(6):1000-1003.
    [15]申文斌, 裴海龙. 改进的Unscented Kalman滤波算法[J]. 计算机工程与科学, 2011, 33(4):192-197.
    [16]盛汉霖, 张天宏, 刘冬冬. 基于扩展卡尔曼滤波器的低成本航姿系统设计[J]. 系统工程与电子技术, 2013, 35(10):2158-2164.
    [17]Hu J S, Sun K C. A Robust Orientation Estimation Algorithm Using MARG Sensors[J]. Instrumentation Measurement IEEE Transactions on, 2015, 64(3):815-822.
    [18]Bird J, Arden D. Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors [Emerging Opportunities for Localization and Tracking][J]. IEEE Wireless Communications, 2011, 18:28-35.邓志红. 惯性器件与惯性导航系统[M]. 科学出版社, 2012.Shuster M D, S. D. O H. Three-axis attitude determination from vector observations[J]. Journal of Guidance Control Dynamics, 1981, 4(1):70-77.Lee J K, Park E J, Robinovitch S N. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions[J]. IEEE Transactions on Instrumentation Measurement, 2012, 61(8):2262-2273Zhang Z Q, Meng X L, Wu J K. Quaternion-Based Kalman Filter With Vector Selection for Accurate Orientation Tracking[J]. IEEE Transactions on Instrumentation Measurement, 2012, 61(10):2817-2824.
    相似文献
    引证文献
引用本文

马正华,贺小捧.基于预估测量值的EKF在手臂测姿中的应用计算机测量与控制[J].,2016,24(11).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-05-29
  • 最后修改日期:2016-10-31
  • 录用日期:2016-07-06
  • 在线发布日期: 2016-11-30
文章二维码