基于图像分割的去雾算法
DOI:
CSTR:
作者:
作者单位:

(西南科技大学 信息工程学院,四川 绵阳 621000)

作者简介:

李林飞(1995-),男,四川乐山人,本科生,主要从事图像处理、DSP方向的研究。

通讯作者:

中图分类号:

基金项目:

四川省教育厅重点项目(15ZA0118);特殊环境机器人技术四川省重点实验室开放基金(13zxtk0505);西南科技大学博士基金项目(13zx7112)。


Rapid Defogging Algorithm Based on Image Segmentation
Author:
Affiliation:

(School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对雾霾条件下,所得的单幅图像出现降质现象,因而对视觉效果要求高的图像进行复原具有必要性;基于图像分割的去雾算法以暗通道先验模型为基础对大气光矢量A值的求取和透射率t(x,y)的处理方法实现改进;首先对单幅图像进行阈值分割找到天空区域,在所获取的天空区域部分结合skyline算法,可以找到精确的大气光矢量A值;进而对初始透射率t(x,y)采用改进的约束最小二乘方滤波进行优化,得到优化透射率t1(x,y),最后将所得的大气光矢量A值和优化透射率t1(x,y)利用大气光传输物理模型复原;改进算法的去雾结果具备保留细致的边缘细节,同时具有高效的去除图像噪声能力;实验结果表明,与he方法相对比,改进去雾算法的处理时间大程度缩短的同时,图像效果得到了提升。

    Abstract:

    Directed at the haze conditions, the resulting single image degradation, therefore, the images that require high visual effects need to restore. The optimized algorithm based on dark channel prior improve the way of getting the atmospheric light vector A and the transmittance t(x,y). First using single threshold segmentation find the sky region, then combine with skyline algorithms can locate the precise atmospheric light vector A; then adopting improved Constrained least-square filter optimize the initial transmittance t(x,y) and get optimized transmittance t1(x,y), and finally restore degrade image by physical model of atmospheric with the resulting atmospheric light vector A and optimal transmission t1(x,y). the improved defogging algorithm not only retained meticulous edge detail, but also has removed image noise efficiently. Experimental results show that compared with the he method, the improved method short defogging processing time, and improve the image effect simultaneously.

    参考文献
    相似文献
    引证文献
引用本文

李林飞,孙鑫.基于图像分割的去雾算法计算机测量与控制[J].,2016,24(4):272-274.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-24
  • 最后修改日期:2016-03-25
  • 录用日期:
  • 在线发布日期: 2016-07-27
  • 出版日期:
文章二维码