基于改进的PSO优化SVM火灾火焰识别算法研究
DOI:
作者:
作者单位:

(常州大学 机器人研究所,江苏 常州 213164)

作者简介:

段锁林(1956-),男,陕西岐山人,博士,教授,主要从事机器视觉与智能移动机器人控制方向的研究。

通讯作者:

中图分类号:

基金项目:

江苏省科技支撑计划项目(社会发展)(BEK2013671)。


Fire Flame Recognition Algorithm Based On Particle Swarm Optimization-based SVM
Author:
Affiliation:

(Robotics Institute, Changzhou University,Changzhou 213164,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室内复杂环境下火灾识别准确率会降低的问题,提出了一种改进的粒子群算法优化支持向量机参数进行火灾火焰识别的方法;首先在YCrCb颜色空间进行火焰图像分割,对获得的火焰图像进行预处理并提取相关特征量;其次采用PSO算法搜索SVM的最优核参数和惩罚因子,并在PSO算法中加入变异操作和非线性动态调整惯性权值的方法,加快了搜索SVM最优参数的精度和速度;然后将提取的火焰各个特征量作为训练样本输入SVM模型进行训练,并建立参数优化后的SVM分类器模型;最后将待测试样本输入SVM模型进行分类识别;算法的火灾识别准确率达到94.09%,分类效果明显优于其他分类算法;仿真结果表明,改进的PSO优化SVM算法提高了火焰识别的准确率和实时性,算法的自适应性更强,误判率更低。

    Abstract:

    Due to fire detection is relatively low in the case of complex indoor environment,the proposed support vector machine (SVM) is applied to fire detection in the paper,among which an improved particle swarm optimization (PSO) is used to determine optimal parameters of support vector machine. Firstly,the obtained flame image will be processed ahead of time and extracted related feature quantity after flame image segmentation in YCrCb color space. Secondly,the optimal kernel parameter and penalty factor for support vector machine will be found by PSO algorithms,meanwhile,the ability of searching accuracy and speed of the optimal parameters of SVM are raised by adding mutation and nonlinear dynamic adjustment inertia weight in PSO algorithm;Then,each extracted flame characteristic parameters is reserved as training samples to train the SVM model,meanwhile,the SVM classifier model is established after the optimization of the parameters. Finally,the test samples will be input the SVM model to classification and recognition. The accuracy rate of algorithm is 94.09%,and the classification effect is better than other algorithms. Simulation results show that the improved SVM algorithm optimized by PSO can enhance the accuracy and real-time performance of flame recognition,as the same time,the algorithm has better adaptability and lower false positive rate.

    参考文献
    相似文献
    引证文献
引用本文

段锁林,任珏朋,毛丹,杨可.基于改进的PSO优化SVM火灾火焰识别算法研究计算机测量与控制[J].,2016,24(4):202-205.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-22
  • 最后修改日期:2015-11-18
  • 录用日期:
  • 在线发布日期: 2016-07-27
  • 出版日期:
文章二维码