模糊神经网络PID在数字舵机控制中的应用
DOI:
作者:
作者单位:

中北大学仪器与电子学院,中国兵器工业集团公司第203研究所,中北大学信息与通信工程学院

作者简介:

通讯作者:

中图分类号:

TJ765.2

基金项目:

总装国防科技基金


Application of Fuzzy Neural Network PID in Digital Servo Control
Author:
Affiliation:

School of Instrument and Electronics,North University of China,No Research Institute of China Ordnance Industries,Xi’an,School of Information and Communication Engineering,North University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对某型号数字舵机系统在非线性时变的复杂条件下,传统的PID控制器响应速度慢,精度低,抗过载能力差的缺点,通过对模糊神经网络算法的研究,结合传统的PID控制器,设计了模糊神经网络PID控制器。分别将两种控制算法应用到舵机系统进行实验可以得出,模糊神经网络PID控制器使得舵机位置环阶跃响应上升时间从80ms减小到35ms,超调量从10%减小到小于5%,在频率特性测试中反馈曲线衰减从-2.79dB减小到-0.77dB,相移从65°减小到35°,同时系统非线性引起的畸变明显改善。

    Abstract:

    For the nonlinear and time variation characteristics of a certain type of servo, the traditional PID algorithm has a shortage of slow-response, low-accuracy and the ability of anti-overload is poor. Acorrding to the study of Fuzzy Neural Network algorithm, combine with the traditional PID controller, the Fuzzy Neural Network PID controller is designed. By applying the two algorithms to the servo control system and taking experiments, the result shows that the Fuzzy Neural Network PID controller makes the rise time of the step response reduces from 80ms to 35ms, the overshoot decreases from 10% to less than 5%, then in the frequency response test, the attenuation of feedback curve reduces from -2.79dB to -0.77dB and the phase-drift decreases from 65° to 35°, further more, the distortion caused by the system nonlinear improve clearly.

    参考文献
    相似文献
    引证文献
引用本文

和江,彭舒钰,侯文.模糊神经网络PID在数字舵机控制中的应用计算机测量与控制[J].,2016,24(10).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-04-05
  • 最后修改日期:2016-05-04
  • 录用日期:2016-05-05
  • 在线发布日期: 2016-11-09
  • 出版日期:
文章二维码