基于改进蚁群算法的无线传感器网络路由的优化
DOI:
CSTR:
作者:
作者单位:

(东北林业大学 机电工程学院,哈尔滨 150040)

作者简介:

戴天虹(1963-),男,黑龙江哈尔滨人,博士,教授,主要从事自动化等方面的教学与科研工作。[FQ)]

通讯作者:

中图分类号:

基金项目:

哈尔滨市科技创新人才(优秀学科带头人计划类)基金项目2014RFXXJ086。


Optimization of Wireless Sensor Network Routing Based on Improved Ant Colony Algorithm
Author:
Affiliation:

(School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了延长无线传感器网络(wireless sensor network,WSN)的生命周期,均衡各个节点间能量消耗,针对现有的WSN路由优化算法存在的问题,提出了一种基于改进蚁群算法的路由优化算法;首先通过对蚁群算法和遗传算法的优劣性比较,在蚁群算法的基础上,结合遗传算法的选择、交叉和变异的操作,从而提高蚁群算法的搜索速度和寻优能力;最优路径评价函数综合考虑节点能耗及节点的剩余能量,使剩余能量多的节点优先参与数据转发,均衡节点间的能量消耗;通过与经典蚁群算法及遗传算法的对比实验表明,随着数据转发轮数增加,改进的蚁群算法能耗小,剩余能量多,网络生命周期明显延长;随着整个网络运行时间的增长,改进的蚁群算法,节点均衡能耗性好,最优路径搜索的成功率也明显优于其他两种算法。

    Abstract:

    In order to extend wireless sensor networks (WSN) life cycle, to keep each node balance between energy consumption, to optimize existing WSN routing algorithm, we propose a routing optimization algorithm based on improved ant colony algorithm. Firstly, the ant colony algorithm and genetic algorithm comparison of the merits, on the basis of ant colony algorithm based on the combination of genetic algorithm selection, crossover and mutation operation, ant colony algorithm to improve search speed and optimization capabilities. Optimal route evaluation function considering the residual energy of nodes and node energy, the remaining energy of many nodes participate in forwarding priority, energy consumption balanced between the nodes. With the classical ant colony algorithm and genetic algorithms comparative experiments show that the number of rounds increases data transfer, improved ant colony algorithm energy consumption, surplus energy and more significantly prolong the network life cycle; with the growth of the entire network uptime, improved ant colony algorithm, node energy balance is good, the success rate of the optimal path search is also significantly better than the other two algorithms.

    参考文献
    相似文献
    引证文献
引用本文

戴天虹,李昊.基于改进蚁群算法的无线传感器网络路由的优化计算机测量与控制[J].,2016,24(2):321-324.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-29
  • 最后修改日期:2015-10-11
  • 录用日期:
  • 在线发布日期: 2016-07-27
  • 出版日期:
文章二维码