基于模式搜索的自适应干扰抵消器算法的研究
CSTR:
作者:
作者单位:

(西安电子科技大学 通信工程学院,西安 710071)

作者简介:

吴 彪(1991-),男,陕西西安人,硕士研究生,主要从事通信抗干扰方向的研究。 陈 南(1965-),男,福建人,教授,硕士研究生导师,主要从事无线通信、通信抗干扰方向的研究。[FQ)]


Research of Adaptive Interference Cancellation Algorithm Based on Pattern Search
Author:
Affiliation:

(School of Telecommunications Engineering,Xidian University,Xi'an 710071,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于空间小,设备多,同址干扰在现代通信平台上十分普遍;为了减小同址干扰对接收机性能的影响,设计了一种基于正交矢量合成的自适应干扰抵消器;根据其中DSP控制单元提取出的数据的特点,提出了将模式搜索算法(PSA)作为控制器算法,并对其进行了改进;利用实际测量的数据进行了仿真分析,结果表明,相比于PSA算法、模拟退火算法、遗传算法,改进后的PSA算法具有更快的收敛速度,同时收敛精度相差无几;最后将算法在DSP中实现并在100~500 MHz进行干扰抵消比的测试,大部分频点可达40 dB,满足性能要求;可以看出,模式搜索算法具有局部寻优能力强,工程上易于实现的优点,适用于需要快速收敛的寻优过程。

    Abstract:

    Due to the presence of multiple devices in a small space, cosite interference is very common in the modern communications platform .To reduce the influence of cosite interference on the receiver performance, a kind of adaptive interference canceller based on orthogonal vector synthesis is designed. According to the characteristics of extracted data from the DSP control unit, pattern search is proposed as a controller algorithm and improved. Simulation analysis are carried out using actual measurement data. The results show that, compared with the PSA algorithm, simulated annealing algorithm, genetic algorithm, the improved PSA algorithm has faster convergence speed, while convergence accuracy is almost the same. Finally the algorithm is implemented in DSP and interference cancellation ratio is measured in the 100-500 MHz frequency range. The final implementation results show that this method can meet the performance requirements. Most frequency points can reach 40 dB, meeting the performance requirements. As can be seen, the pattern search algorithm has strong local search ability and the advantage of easy to implement in engineering,suitable for optimization process that requires fast convergence.

    参考文献
    [1] 赵波, 全厚德, 崔佩璋.车载无线电台同址干扰测试与分析.计算机测量与控制,2011,9(8):1868-1871.
    [2] Karlsson S, Grenvall M, Kvick A, et al.Co-site Interference Analysis and Antenna System Integration on a Swedish Combat Vehicle Platform.San Diego CA:IEEE Military Communications Conference.2013.369-374.
    [3] 王伟勤.跳频通信电台共址干扰及其抑制技术.电讯技术,2011,1(7):178-182.
    [4] Li W L, Zhao Z H, Tang J, et al.Performance analysis and optimal design of the Adaptive Interference cancellation System.IEEE Transactions on Electromagnetic Compatibility, 2013,5(6):1068-1075.
    [5] 赵洪峰,李旻.自适应技术在电子对抗中的应用.航天电子对抗,2015,1(1):26-29,1.
    [6] Hong S, Brand J, Jung Choi, et al.Applications of self-interference cancellation in 5G and beyond.IEEE Communications Magazine, 2014,2(2):114-124.
    [7] 程燕.自适应干扰抵消系统的关键技术研究.西安:西安电子科技大学,2014.
    [8] 李鹏.V/UHF波段自适应干扰抵消系统关键技术研究.西安:西安电子科技大学,2011.
    [9] Torczon V.On the convergence of pattern search algorithms.SIAM J Optim,1997,7(1):1-25.[ZK)]
    [10] 柳贺,黄猛,柳桂国,等.基于混沌搜索和模式搜索的混合优化方法.华东理工大学学报,2008,4(1):126-130.
    [11] 杨春,倪勤.变步长非单调模式搜索法.高等学校计算数学学报,2005,7(2):160-168.
    [12] Zhang X L, Zhou Q H, Wang Y.An Efficient Pattern Search Method.Journal of Applied Mathematics and Physics,2013(1):68-72.
    [13] 曲良东,何登旭,吴尽昭.一种群模式全局搜索算法.模式识别与人工智能,2013,6(6):592-597.
    [14] 张煜东,吴乐南,王水花.基于遗传算法与模式搜索的混合优化算法.南京信息工程大学学报,2012,4(1):34-39.
    [15] Labbi Y, Attous D B.A hybrid particle swarm optimization and pattern search method to solve the economic load dispatch problem.International Journal of System Assurance Engineering and Management,2014,5(3):435-443.
    [16] 马永杰,云文霞.遗传算法研究进展.计算机应用研究,2012,9(4):1201-1206,0.
    [17] 陈华根,吴健生,王家林,等.模拟退火算法机理研究.同济大学学报(自然科学版),2004,2(6):802-805.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴彪,陈南.基于模式搜索的自适应干扰抵消器算法的研究计算机测量与控制[J].,2016,24(2):235-238.

复制
分享
文章指标
  • 点击次数:716
  • 下载次数: 401
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-08-19
  • 最后修改日期:2015-09-18
  • 在线发布日期: 2016-07-27
文章二维码