基于大数据的高速列车气动载荷作用下迭代学习主动控制研究
DOI:
CSTR:
作者:
作者单位:

(西南交通大学 机械工程学院,成都 610031)

作者简介:

陈春俊(1967-),男,四川蒲江人,教授,博士生导师,主要从事自动控制、高速列车气动性能测试、振动控制等方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51475387, 51375403)。


Research on Big Data Based Iterative Learning Active Control on High Speed Train under Aerodynamic Loads
Author:
Affiliation:

(School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    列车在高速运行的过程中与另一列车相交会时,将产生剧烈的瞬态气动载荷冲击而引起车体瞬间横向振动加剧,导致列车横向平稳性恶化;为了改善列车运行平稳性,采用大数据方法及迭代学习控制思想,提出基于高速列车运行大数据的迭代学习主动控制算法,并进行多体动力学与控制算法的联合仿真,进一步研究控制算法对会车气动载荷幅值变化和会车时间变化的鲁棒性;结果表明:大数据迭代学习主动控制经过5次迭代后对会车气动载荷激扰下的车体横向振动峰值降低52.67%,且控制算法对会车工况变化有较好的鲁棒性。

    Abstract:

    Strong transient aerodynamic loads will produced when a train passing another in high speed. The aerodynamic loads cause transient vehicle lateral vibration, which causes the deterioration of lateral stability. To improve the train running stability, big data method and iterative learning control were used and iterative learning active control algorithm based on high-speed train running big data was proposed. The co-simulations based on multibody dynamics and control algorithm were performed and even researched robustness of control algorithm when the magnitude of aerodynamic loads or intersection time varied. The results show that the big data based iterative learning active control through five iterations can make vehicle lateral vibration peak reduce 52.67% under aerodynamic loads, and control algorithm has strong robustness when intersection conditions change.

    参考文献
    相似文献
    引证文献
引用本文

陈春俊,孙宇,何洪阳.基于大数据的高速列车气动载荷作用下迭代学习主动控制研究计算机测量与控制[J].,2016,24(2):118-121.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-11
  • 最后修改日期:2015-09-09
  • 录用日期:
  • 在线发布日期: 2016-07-27
  • 出版日期:
文章二维码