基于三维激光扫描和BIM的构件缺陷检测技术
DOI:
CSTR:
作者:
作者单位:

(南京工业大学 电气工程与控制科学学院,南京 211800)

作者简介:

钱 海(1991-),男,江苏靖江人,研究生,主要从事建筑智能化技术方向的研究。 马小军(1956-),男,江苏南京人,教授,主要从事建筑电气与智能化、智能照明控制及BIM技术方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:


Technology Based on 3D Laser Scanner and BIM for Detecting Defects of Component
Author:
Affiliation:

(College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211800, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了自动检测建筑构件在生产及运输过程中产生的缺陷,提出了基于三维激光扫描和BIM模型的建筑构件检测方法;首先利用三维激光扫描仪获取构件对象的实际点云,并通过弦高偏差法实现点云去噪,同时基于BIM搭建构件的三维模型,通过stl文件将模型对象转换为期望点云;然后分别利用PCA算法和基于K-D树的ICP算法实现点云的初始配准和精配准;最后利用局部均方根值评估构件的误差大小,并通过基于霍夫变换的线性回归分析方法实现了误差量化;通过实例验证了所提算法的可行性与准确性。

    Abstract:

    To automatically detect the defects in the process of production and transportation, a building component detection method based on 3D laser scanning and building information modeling (BIM) model is proposed. Firstly component object’s actual point cloud is acquired by 3D laser scanner. Noise of point cloud is removed through the chord deviation method, and construction components’ 3D model is built based on BIM. Model objects is converted to desired point cloud through the STL file. Then the initial registration and precise registration of point cloud are realized by principle component analysis algorithm (PCA) and independent component analysis algorithm (ICP) based on K-D tree. Finally, the error of the component is evaluated by the local root mean square value, and the error is quantified by the linear regression analysis method based on Hough transform. The feasibility and accuracy of the proposed algorithm are verified by practical application.

    参考文献
    相似文献
    引证文献
引用本文

钱海,马小军,包仁标,徐胜.基于三维激光扫描和BIM的构件缺陷检测技术计算机测量与控制[J].,2016,24(2):14-17.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-29
  • 最后修改日期:2015-08-31
  • 录用日期:
  • 在线发布日期: 2016-07-27
  • 出版日期:
文章二维码