基于遗传神经网络的旋转机械故障预测方法研究
DOI:
CSTR:
作者:
作者单位:

(1.西北工业大学 动力与能源学院,西安 710072;2.中国华阴兵器试验中心 环境模拟室,陕西 华阴 714200)

作者简介:

张 琪(1984-),女,陕西咸阳人,硕士研究生,主要从事智能诊断与预测方向的研究。 吴亚锋(1961-),男,陕西渭南人,教授,博士研究生导师,主要从事现代信号处理理论与方法及振动噪声分析与控制方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:


Research on Mechanical Fault Prediction Based on Improved Neural Network[JZ)][HS)]
Author:
Affiliation:

(1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China;2.Department of Environment Simulation, Huayin Ordinance Test Centre, Huayin 714200, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    许多大型旋转机械运行工况恶劣,非平稳、非线性特征明显,以及各种突发性、偶然性因素的影响,给基于振动信号处理的状态预测和状态维护分析带来困难;神经网络以其强大的处理非线性系统的能力在故障预测中得到广泛的应用,但由于其在追求高精度训练目标时易陷入局部极值,且收敛速度慢甚至发散;针对这个问题,提出了采用遗传算法对神经网络连接权值和阈值进行优化,这样不仅发挥了神经网络广泛的映射特性也使遗传算法的全局搜索优势尽显无疑;通过组合这两种算法,在提升网络学习的准确度方面,优点尤其突出,最终提高对旋转机械故障预测和寿命估计的性能,这在某环境模拟试验系统动力风机的轴承磨损故障预测中得到了验证。

    Abstract:

    The representative characteristics of large-scale rotating machine in operation are non-stationary and nonlinear, and also influenced by sudden and accidental factors, thus the difficulty in condition monitoring and fault prediction based on vibration signal analysis is great. Artificial neural networks, which perform a nonlinear mapping between inputs and outputs, are widely used in fault prediction, but easy to fall into local optimal solution and converge with slow speed or even diverge. In this paper, aimed at this problem, the dynamic prediction model is studied,in which back propagation(BP) algorithm coupled with genetic algorithm(GA) will be used to train and optimize the networks. BP of ANN has been recognized as a powerful mapping approach to model extremely complex nonlinear process while GA for global search ability was used in various diverse optimization systems. Owing to complementary advantages of both merged, the accuracy of the GA-BP networks is improved significantly. The final goal is to improve the performance of GA-BP network in predicting faulty and estimating residual life for rotating machinery. Ultimately, verification of the optimization was showed at the bearing wear data from the power fan of a environmental simulation test system.

    参考文献
    相似文献
    引证文献
引用本文

张琪,吴亚锋,李锋.基于遗传神经网络的旋转机械故障预测方法研究计算机测量与控制[J].,2016,24(2):11-13.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-09-07
  • 最后修改日期:2015-09-29
  • 录用日期:
  • 在线发布日期: 2016-07-27
  • 出版日期:
文章二维码