基于NW型小世界人工神经网络的污水出水水质预测
DOI:
CSTR:
作者:
作者单位:

(华北理工大学 电气工程学院,河北 唐山 063009)

作者简介:

张瑞成(1975-),男,河北丰润人,博士,教授,硕士研究生导师,主要从事模式识别与智能控制方向的研究。 [FQ)]

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金资助项目(F2014209192);河北联合大学杰出青年基金资助项目(JP201301);河北省教育厅重点资助项目(ZD20131011)。


Effluent Quality Prediction of Waste Water Treatment Plant Based on NW Multi-layer Forward Small World Artificial Neural Networks
Author:
Affiliation:

(College of Electrical Engineering, North China University of Science and Technology, Tangshan 063009, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了预测污水处理出水水质,针对污水处理过程具有多变量、非线性、时变性、严重滞后的特点,提出了基于NW型小世界人工神经网络的污水处理出水水质预测模型;首先根据污水处理系统确定模型输入输出变量个数,然后建立了多层前向小世界神经网络模型,并对网络模型的隐层结构进行了优化研究;借助污水处理过程的历史数据进行了仿真研究,结果表明:和同规模的多层前向人工神经网络相比,小世界神经网络对污水出水水质预测具有较高精度和收敛速度,为污水出水水质的实时预测提供了一种有效的新方法。

    Abstract:

    In order to predict the water quality of sewage treatment, a NW multi-layer forward small world artificial neural networks soft sensing model is proposed for the waste water treatment processes, regarding the characteristics of multivariable, nonlinear, time-varying and time lag in the treatment process. The input and output variables of the network model were determined according to the waste water treatment system. The multi-layer forward small world artificial neural networks model was built, and the hidden layer structure of the network model were studied. The waste water treatment process experiments and the training and simulation of the soft sensing model based on the experimental data were conducted. The results show that compared with the same size of the multilayer feedforward neural network, the small world neural network has a higher precision and convergence speed, and provides a new method for the real-time prediction of the wastewater.

    参考文献
    相似文献
    引证文献
引用本文

张瑞成,王宇,李冲.基于NW型小世界人工神经网络的污水出水水质预测计算机测量与控制[J].,2016,24(1):61-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-22
  • 最后修改日期:2015-08-27
  • 录用日期:
  • 在线发布日期: 2016-07-26
  • 出版日期:
文章二维码