多分类SVDD混叠域识别的模拟电路故障诊断
DOI:
CSTR:
作者:
作者单位:

(1.第二炮兵工程大学 信息工程系,西安 710025;;2.西安通信学院,西安 710106) 

作者简介:

仝 奇(1988-),男,河南开封人,硕士研究生,主要从事装备故障诊断方向的研究。 叶 霞(1977-),女,,江苏南京人,副教授,硕士生导师,主要从数据库、指挥信息系统方向的研究。 李俊山(1956-),男,陕西白水人,教授,博士生导师,主要从事图像处理与目标识别、网络信息安全、电子对抗模拟与仿真方向的研究。 [FQ)]

通讯作者:

中图分类号:

基金项目:


An Approach to Discriminate Overlap Region of Multi-class Classification SVDD for Analog Circuits Fault Diagnosis
Author:
Affiliation:

(1.Department of Information Engineering, Second Artillery Engineering University, Xi’[KG-*2]an 710025, China; ;2. Xi’an Communications Institute, Xi’an 710106, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    JP+1]针对多分类支持向量域数据描述(SVDD)方法中混叠样本诊断精度差的问题,提出了一种带异类样本的多分类SVDD算法;该方法在普通SVDD超球模型基础上,对于存在混叠区域的类别,以该类所有样本为目标类,其他类与之混叠的样本为异类,利用带异类样本的SVDD算法重新训练,直至所有超球优化完毕;仿真实验验证了文章算法消除混叠和提高精度的能力,并将该算法应用于模拟电路故障诊断中;相较与SVDD多分类算法、一对一和一对多SVM算法,文章方法在模拟电路故障诊断中具有更高的诊断精度。

    Abstract:

    JP+1]To improve the discrimination accuracy of conventional multi-class classification support vector data description (SVDD) methods, a multiple classification Support vector data description algorithm with Negative Samples is proposed. Based on the general model of SVDD, the proposed algorithm treats the samples in the class as the target class, while the other classes of overlap and sample is heterogeneous for the overlap region. By using SVDD algorithm with Negative samples, the hypersphere model is trained again until all hypersphere models optimized. Simulated experimental results show that the proposed algorithm can eliminate overlap and improve the discrimination accuracy. The algorithm is applied in the implemention of analog circuits fault diagnosis, comparing with SVDD classification algorithm, one-to-one and one-to-many SVM algorithm, results show that the algorithm is more effective and higher accuracy in fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

仝奇,胡双演,叶霞,张仲敏,李俊山.多分类SVDD混叠域识别的模拟电路故障诊断计算机测量与控制[J].,2016,24(1):50-53.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-09
  • 最后修改日期:2015-09-06
  • 录用日期:
  • 在线发布日期: 2016-07-26
  • 出版日期:
文章二维码