多目标模糊工期的维修保障资源调度优化研究
DOI:
作者:
作者单位:

(1.北京理工大学 机电学院,北京 100081;2.北京特种车辆研究所,北京 100072)

作者简介:

王 涛(1978),男,吉林通化人,工程师,博士研究生,主要从事武器装备综合保障方向的研究。

通讯作者:

中图分类号:

基金项目:


Research on Maintenance Support Resources Optimization Based on Multi-objective Fuzzy Period
Author:
Affiliation:

(1.Beijing Institute of Technology, Beijing 100081, China;2. Beijing Institute of Special Vehicles, Beijing 100072, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以某型特种车辆维修保养的三级保养工艺流程为对象,提出了不确定性维修保障资源调度优化问题;针对具有工序模糊作业时间和模糊工期的调度问题,采用一般三角模糊数来表示工序作业时间和完工时间,一般梯形模糊数来表示任务期望工期;并设计了一种混合粒子群-遗传算法,以完工时间最短、关键人力负荷最小和满意度最高为优化目标进行求解;算法可以有效求得其8个最优解,对求得的Pareto最优解集进行了结果分析,评价了不同评价指标对调度方案的影响;实例结果表明,算法求解结果与实际情况相吻合,较之精确调度,更加具有可操作性,为调度部门制定合理的调度方案可以提供理论支撑。

    Abstract:

    This articles aims to a type of special vehicle so as to optimize its technological process in “three-level” maintenance, proposes uncertain resource-constrained project scheduling problem. As to the scheduling problem with both fuzzy processing time and fuzzy period, it adopts the common triangular fuzzy number to represent the fuzzy processing time and fuzzy completion time of the process and the trapezoidal fuzzy number to represent the expected period for the project. We put forward a hybrid particle swarm - genetic algorithm for the maintenance process fuzzy scheduling, sets three evaluation index, such as fuzzy completion time, the key human resources load and the agreement index. The algorithm can obtain the eight optimum solutions, and it analyzes the results of the Pareto optimal solution and the influence under different indexes on the scheduling scheme. The result shows that the solution matches the practical situation, its operability is much more than the accuracy scheduling. It provides the theory support for making the reasonable scheduling scheme by the scheduling department.

    参考文献
    相似文献
    引证文献
引用本文

王涛,张伏龙.多目标模糊工期的维修保障资源调度优化研究计算机测量与控制[J].,2015,23(8):2782-2784, 2788.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-25
  • 最后修改日期:2015-01-14
  • 录用日期:
  • 在线发布日期: 2015-10-08
  • 出版日期:
文章二维码