基于自适应多尺度时频熵的遥测振动信号异常检测方法
DOI:
作者:
作者单位:

(中国人民解放军91550部队94分队,辽宁 大连 116023)

作者简介:

刘 学(1983-),男,黑龙江大庆市人,博士,主要从事精确制导与跟踪和遥测信号处理方向的研究。

通讯作者:

中图分类号:

基金项目:


Telemetry Vibration Signal Abnormality Detection Method Based on Adaptive Multi-scale Time-frequency Entropy
Author:
Affiliation:

(94. Units, No.91550 Army, Dalian 116023, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥测振动信号频域成份复杂、非平稳非线性和强噪声特性,提出一种基于自适应多尺度时频熵的遥测振动信号异常检测方法;首先对采集到的遥测振动信号进行零漂修正和趋势项消除,然后采用自适应分解方法对信号进行多尺度分解,得到若干分量,利用相关系数剔除虚假分量;接下来用筛选出的分量作时频分布,对时频分布进行多层多尺度划分,计算相应尺度频段内信号的分形维数,依据分形维数的大小自适应地确定各频段的时频划分尺度;最后计算时频平面的自适应多尺度时频熵,通过时频熵的变化情况对遥测振动信号进行异常检测;实测数据验证了该方法的有效性。

    Abstract:

    For telemetry vibration signal in the frequency domain has characteristics of complex composition, nonlinear and non-stationary, as well as strong noise, a telemetry vibration signal detection method based on adaptive multi-scale time-frequency entropy was proposed. Firstly, the collected telemetry vibration signal was zero drift amended and eliminated the trend term. Secondly, adaptive signal decomposition method was used to multi-scale decompose the signal to obtain a number of components, and the correlation coefficient was used to remove the false component; Thirdly, the time-frequency distribution was calculated by the screening component, and divided multi-layer and multi-scale, then the fractal dimension of the corresponding scale band signal was calculated to determine the divided scale of each frequency band adaptively; Finally, the adaptive multi-scale time-frequency entropy was calculated, then the abnormal telemetry vibration signal was detected through the changes of Time-frequency entropy. and measured data demonstrate the effectiveness of this method.

    参考文献
    相似文献
    引证文献
引用本文

刘学,梁红,张志国.基于自适应多尺度时频熵的遥测振动信号异常检测方法计算机测量与控制[J].,2015,23(8):2629-2632.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-11-15
  • 最后修改日期:2014-12-21
  • 录用日期:
  • 在线发布日期: 2015-10-08
  • 出版日期:
文章二维码