云计算中面向能耗降低的虚拟机多资源放置算法
DOI:
CSTR:
作者:
作者单位:

四川大学 电子信息学院,四川大学 电子信息学院,,四川大学 电子信息学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Virtual machine multi-resource placement algorithmto reduce the energy consumption in the cloud computing
Author:
Affiliation:

College of Electronics and Information Engineering,Sichuan University,College of Electronics and Information Engineering,Sichuan University,,College of Electronics and Information Engineering,Sichuan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低云计算系统产生的能耗,实现系统多类型资源的合理利用,提出虚拟机多资源能耗优化放置模型,并给出虚拟机多目标资源随机多组优化算法(RMRO)。RMRO算法随机生成多组虚拟机放置序列,并对每组序列进行优化,从中选出最优的序列作为最终的虚拟机序列。基于RMRO,进一步提出了3种虚拟机放置序列的再优化策略,通过实验对比,选择MMBA策略作为最佳策略。仿真结果表明,RMRO相比传统的MBFD和MBFH算法,能明显降低数据中心的能耗,同时使系统多种资源利用更合理。

    Abstract:

    To reduce the enormous energy produced by the cloud computing system and achieve reasonable utilization of a variety of resources, a virtual machine placing model with multi-resource energy consumption optimization is built and a virtual machine placement algorithm—multi-object resources random multiple sets re-optimization algorithm(RMRO) is proposed. In RMRO, the multi-group sequences of the virtual machine is randomly generated, and after each sequence is optimized , the optimal sequence is selected from the optimized multi-group sequences. Based on RMRO, to optimize the virtual machine allocation sequence , three kinds of policy is proposed. Through the experimental comparison , MMBA is selected as the optimal strategy. Compared to the traditional algorithms which include MBFD and MBFH , RMRO can significantly reduce energy consumption, and make a variety of resources more reasonable in the cloud computing system.

    参考文献
    相似文献
    引证文献
引用本文

王新杰,雷印杰,乔永钦,严 华.云计算中面向能耗降低的虚拟机多资源放置算法计算机测量与控制[J].,2015,23(12):67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-17
  • 最后修改日期:2015-07-15
  • 录用日期:2015-07-16
  • 在线发布日期: 2016-01-08
  • 出版日期:
文章二维码