基于GA-BP的移动通信设备故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51177072);齐齐哈尔市科技攻关项目(GYGG-201106)


Fault Diagnosis of Mobile Communication Equipment Based on GA-BP
Author:
Affiliation:

Qiqihar University,Communications and Electronics Engineering,Qiqihar,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对通信设备故障发生随机性强,影响因素多,对应的故障诊断有高度非线性和不确定性的特点,采用BP神经网络算法,优化的GA-BP神经网络算法和POS-BP神经网络算法分别搭建基站设备故障诊断模型,提取设备故障历史数据进行MATLAB仿真,准确预测设备故障类型,帮助提高代维公司调度管理的智能化水平,提高基站设备运维的执行效率。仿真结果表明:本文的BP,GA-BP和POS-BP神经网络算法都能够实现设备故障类别的预测,且GA-BP神经网络算法相比BP和POS-BP神经网络算法对通信设备故障诊断有更好的适应性。

    Abstract:

    The neural network has good self-learning ability, powerful parallel processing capabilities and advantages that can approximate any nonlinear function. For communication equipment malfunction occurrence is random, can be affected by many factors, corresponding Troubleshooting Has a highly nonlinear and uncertainty characteristics. BP neural network algorithm, optimized GA-BP neural network algorithm and POS-BP neural network algorithm are used to Build a base station equipment fault diagnosis model Respectively, the base station equipment malfunction historical data are extracted for simulation, predicting equipment malfunction type accurately, To help raise the level of intelligence of dispatching management for Maintenance Company, improving the efficiency of the operation and maintenance of base station equipment. The Simulation results show that: BP paper, GA-BP and POS-BP neural network algorithms are able to achieve the goals of predicted the category of equipment malfunction, and the GA-BP neural network algorithm compared to BP or POS-BP neural network algorithm for communications equipment troubleshooting has better adaptability.

    参考文献
    相似文献
    引证文献
引用本文

姚仲敏,沈玉会.基于GA-BP的移动通信设备故障诊断计算机测量与控制[J].,2015,23(10):9.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-03-19
  • 最后修改日期:2015-04-25
  • 录用日期:2015-04-29
  • 在线发布日期: 2015-10-28
  • 出版日期:
文章二维码